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Criterion for 3 to be eleventh power

STANISLAV JAKUBEC

Abstract. In this paper we prove a criterion for 3 to be an 11th power modulo p in the
case when p is not representable by the quadratic form z% + 11y2.

1991 Mathematics Subject Classification: Primary 11R18

The solution of the question when 3 is the [th power modulo a prime p for prime
1 goes back to Jacobi who solved the case | = 3 in [3]. The solution for I = 5 was
given by E. Lehmer in [5].

Proposition 1. 3 s a quintic residue of a prime p = 30n + 1 if and only if the
equations

16p = 2% + 45002 + 450c? + 1125d?, zd = c? — b? — 4bc

have a solution, and of the prime p = 30n + 11, ¢f and only f the equations
16p = 81a® + 4500 + 450¢2 + 125w?, aw = ¢ — b% — 4be

have a solution in common.

For | = 7 the solution was given by P.A.Leonard and K.S. Williams in [6],
where the following theorem was proved.

Proposition 2. 3 is a seventh power modulo p if and only if x5 = ¢ = 0
(mod 3), where (x1, 22, 3, &4, T5, Te) is one of the siz nontrivial solutions of dio-
phantine equations

72p = 222 + 42(22 + 22 + 22) + 343(2? + )
121’% — 12:1:3 + 147x§ — 4411:% + 56x1x6 + 242023 — 24x924+
+48z3x4 + 98x525 = 0
]2m§ — 12&% + 491'% - 1471:;“; + 28x1x5 + 282126 + 48923+
+24r92424x324 + 4902526 = 0
zy =1 (mod 7)

More work has been done on the question when ¢ is an [-th power modulo p by
various authors, for instance the cases | = 7, ¢ = 2,3 have been treated somewhat
differently by Alderson [1], the case p =1 (mod !) has been considered by Ankeny
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(2], the case ¢ = [ by Ankeny [2] and Muskat [7] and the cases [ = 5, ¢ < 19 by
Williams [9].

To attack this problem for I = 11, we shall use some results from the papers [4]
and [8].

Let x be the Dirichlet character modulo p

x(z) = llnd(x)’

and J(x, x) the Jacobi sum
JoGx) = Y, x(@)x()-
r+y=1
The starting point of our solution of the problem when 3 is an 11** power is the

following result of J. C. Parnami, M. K. Agrawal and A. R. Rajwade proved in [8]:
Proposition 3. Let p=1 (mod [}, then 2 is an [-th power modulo p if and only

i
! aj+az+...+a-_; =0 (mod 2),
where (a1, az, ..., aj—1) is one of the eractly | — 1 solutions of the diophantine
system of equations
(i) p=Yisiaf = Yisi aiaig,
(i) SD) @il = Dis; Giltiez = = Y0 Qi
(217) p does not divide []y(ox)5y ok (Zi;]] alC;) ;

where A(n) s the least non-negative residue of n modulo I and oy s the automor-
phism {; — Cf,

(iv) l+ar+...+aq-1 =0 (modl),
(v) aj+2a+...+(l=1Da-1 =0 (modl).
Note now that each solution (a1, @2, ..., a;—1) of this system corresponds to the

Jacobi sum 5
J(x', x*') = aG+ axGi 4w

for some s = 1,2,...,{ — 1. For, let
X =aG+ ol + ot angh
then the conditions (i), (ii) guarantee that

XX =p.
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Further let p be a prime divisor of the field Q((;), plp. The condition (iii) guar-
antees that

p|X if and only ifp|J(x°, X*),
for some s = 1,2,..., 1 — 1.

Hence, the conditions (i), (ii), (iii) guarantee the existence of s and of a unit

¢ € Q((), such that
J(x*, x°) = eX.

The conditions (iv), (v) guarantee that e = 1, hence
J(x*x*) = X

The most peculiar of the conditions (i), (ii), (iii), (iv), (v) is (iii).
In [4] the following result is proved

Proposition 4. Let ]l = 11;19 and let p = 1 (mod ), 4p = A% + IB*. The

Jacobt sum J(x, x) is uniquely determined, up to conjugativity and associativity,
by the solution

XX =p, X € Z(¢), X=1 (mod?2),
ifand only if A= B =1 (mod2).

On the basis of this proposition, the condition (iii) can be now replaced by the
condition

(#5) aG+al+. 4 aTP=¢" (mod2).
Let
a=Cu+ G+ + G+ Gis
then
aa = 3.

Our main result 1s

Theorem . Let p be a prime 4p = A> +11B2 A=B =1

(mod 2). The prime
8 is an 11th pover modulo p if and only if

a1Cin + aoCh + . 4+ @10ll) = (=¢11)Y  (mod a),

for some w € N, where

. 10
(9 P=7 i azz - Z:lix a4,

.. 10 0
(21) Dz Gilipl = Zil::l Aidi4o = ... = Z}il A;ai410,
(uz)’ a1(11 + a2C121 +...+ (llocll? = (T (rnod 2),
(iv) l+a14+...4a10=0 (mod 11),

(v) a1 +2a2+...410a;0=0 (mod 11).
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Let g, p, | be primes, p =1 (mod!) ¢ # p, ¢ and let K be a subfield of t
field Q((p), [K : Q] = 1. Let

Br="Teqe, k(@) Bi=d"NB), for  i=1,2..1
Lemma 1. Let n,m e N, n #Zm (modl).
If q is a lth power modulo p, then

m ~1
*a )E—Pl— +p (mod gq).

TrQe,x (0
If q is not a lth power modulo p, then

ng™y p—l
Trqe, ) x (BT ™) = === (mod g).

Proor: If ¢ is [th power modulo p, then
pi=p8 (modgq),
and hence
n+ m _ P
TrQ,yx (B ™) = Trqe,yu (B1) - (mod g).
The assertion follows from the equality

p—1
Trqe, )k (B1) = === +».

If ¢ is not a {th power modulo p then
Bl =P, (modq),

for some s,5 # 1.
Hence

m

TrQe, (BT T) = Trqq,y (Buf) (modq), s #t.
Because s # t, the following equality holds

~1
TrQe,)/x (Bshe) = _ET'

Lema 1 is proved.

If

() =) x()¢G -

=1

is the Gauss sum, then the identity

Gr(x) + Grx®) + ...+ ¢ () = 1+ 18,



Criterion for 3 to be eleventh power

is true for some s = 1,2,...,[.
It follows that

n m

Trq, kBt 70 ) =

— CIT(X)+C2T(X2)+._.+C1—17_ -1y _ 1 q"+q™
=TrQg,)/x ( ! 1 T

Trqye,y i (G 7007 + GO + 4+ T (e

I

(& T(X)qm + Cth 0+ + C,(l_l)qu(Xl_l)qm —1) (mod g).
Let d be an integer such that
" +d¢™ =0 (modl),

then

n

()7 T(x)”" € QQ).
and we have the equality
Trqe,yx (G 7007 + G704+ ¢TI ()T -
(Clqu(X)qm + Cl2qm7'(X2)qm 4.+ Cl(l—l)qmr(xl—l)q’" B 1) —
= TIQ((,,)/K(l + TrQ(Cr)/Q(T(X)q T(Xd)qm)A
Thus we proved the next lemma.

Lemma 2. A prime q is a lth power modulo p if and only if

l ) n m p—1
e 1+ TrQyQ(r007 T(X)™) = === +p  (mod g).

ProoF oF THE THEOREM: We have
r(x)*(x") =pJ (X, X).

Take n = 1,m = 2 in the above, then d = 7.
If & is the automorphism with o(¢11) = (¥, then

()X = pJI(x, x)oJ (x, X)o7 (x, x) * T (x, ) *0° T (x, x),
The field Z(¢11)/(@) is of the characteristic 3 and
(Z(¢11)/(@) : Z/32] = 5.
Clearly

aJ(x,x)e®J(x,x) = oJ(x, x)oJ (x,X) = p,
"I (x,x)o2J (x,x) = " J(x,x)e"J (x, x) = p,
a*J(x, x)e*J (x, x) = e*J(x, x)*J (x, x) = p.
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Substituing into (1) we get

It

T(X)3T(X7)9 = p7J(X, X)0'6J(x, )()'IUZJ()(y X)'40'8J(X: X)2U4J(X» X)_l-

is easy to see that

a8J(x,x) = J(x,x)° (mod @),
a?J(x,;x) = J(x, x)¥"  (mod a),
oJ(x,x) =J(x,x)* (mod @),
c*J(x,x) = J(x,x)*" (mod a).

By substitution into (1) we have
T(X,)3T(X7)9 = P7J(X:X)_352 = p7J(XyX)132 (mod a)‘

The order of the multiplicative group of the field Z(¢11)/() is equal to 3° — 1 =

242.

It is casy to see
JOoo )P =¢  (mod a).

Using Lemma 2 we see that 3 is an 11th power modulo p if and only if
JOOX)™*? =1 (mod a).

This congruence holds if and only if

J(x,x) = (—=¢11)°  (mod «),

for some s = 1, 2, ..., 22 and Theorem 1 is proved. ]
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