[1] Czédli G., Freese R.:
On congruence distributivity and modularity. Algebra Universalis 17 (1983), 216-219.
MR 0726275 |
Zbl 0548.08003
[2] Czédli G., Horváth E. K.:
Congruence distributivity and modularity permit tolerances. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math., to appear.
MR 1967338 |
Zbl 1043.08002
[3] Czédli G., Horváth E. K.:
All congruence lattice identities implying modularity have Mal’tsev conditions. Algebra Universalis, to appear.
Zbl 1091.08007
[4] Day A.:
A characterization of modularity for congruence lattices of algebras. Canad. Math. Bull. 12 (1969), 167-173.
MR 0248063
[5] Day A.:
p-modularity implies modularity in equational classes. Algebra Universalis 3 (1973), 398-399.
MR 0354497 |
Zbl 0288.06012
[6] Day A., Freese R.:
A characterization of identities implying congruence modularity. I. Canad. J. Math. 32 (1980), 1140-1167.
MR 0596102 |
Zbl 0414.08003
[7] Freese R., McKenzie R.:
Commutator theory for congruence modular varieties. London Mathematical Society Lecture Note Series, 125, Cambridge University Press, Cambridge, 1987. iv+227.
MR 0909290 |
Zbl 0636.08001
[8] Freese R., Nation J. B.:
3,3 Lattice inclusions imply congruence modularity. Algebra Universalis 7 (1977), 191-194.
MR 0434906 |
Zbl 0384.08006
[9] Gedeonová E.:
A characterization of p-modularity for congruence lattices of algebras. Acta Fac. Rerum Natur. Univ. Comenian. Math. Publ. 28 (1972), 99-106.
MR 0313169 |
Zbl 0264.06008
[10] Grätzer G.: Two Mal’cev-type theorems in universal algebra. J. Combinatorial Theory 8 (1970), 334-342.
[11] Gumm H. P.:
Geometrical methods in congruence modular algebras. Mem. Amer. Math. Soc. 45, 286 (1983), viii+79.
MR 0714648 |
Zbl 0547.08006
[12] Herrmann C., Huhn A. P.:
Zum Begriff der Charakteristik modularer Verbände. Math. Z. 144 (1975), 185-194.
MR 0384630 |
Zbl 0316.06006
[13] Herrmann C., Huhn A. P.:
Lattices of normal subgroups which are generated by frames. In: Lattice Theory, Proc. Conf. Szeged 1974, Coll. Math. Soc. J. Bolyai 12, North-Holland, Amsterdam 1976, 97-136.
MR 0447064
[14] Huhn A. P.:
Schwach distributive Verbände. I. Acta Sci. Math. (Szeged) 33 (1.972), 297-305 (in German).
MR 0337710 |
Zbl 0536.08002
[15] Huhn A. P.:
On Gratzer's problem concerning automorphisms of a finitely presented lattice. Algebra Universalis 5 (1975), 65-71.
MR 0392713
[16] Hutchinson G., Czédli G.:
A test for identities satisfied in lattices of submodules. Algebra Universalis 8 (1978), 269-309.
MR 0469840
[17] Jónsson B.:
Algebras whose congruence lattices are distributive. Math. Scandinavica 21 (1967), 110-121.
MR 0237402
[18] Jónsson B.:
Congruence varieties. Algebra Universalis 10 (1980), 355-394.
MR 0564122
[19] McKenzie R.:
Equational bases and nonmodular lattice varieties. Trans. Amer. Math. Soc. 174 (1972), 1-43.
MR 0313141
[20] Mederly P.:
Three Mal’cev type theorems and their application. Mat. časopis SAV 25 (1975), 83-95.
MR 0384650 |
Zbl 0302.08003
[21] Nation J. B.:
Varieties whose congruences satisfy certain lattice identities. Algebra Universalis 4 (1974), 78-88.
MR 0354501 |
Zbl 0299.08002
[23] Pálfy P. P., Szabó, Cs.:
An identity for subgroup lattices of abelian groups. Algebra Universalis 33 (1995), 191-195.
MR 1318983 |
Zbl 0820.06003
[25] Snow J. W.:
Mal’tsev conditions and relations on algebras. Algebra Universalis 42 (1999), 299-309.
MR 1759488 |
Zbl 0979.08004
[27] Wille R.:
Kongruenzklassengeometrien. Lecture Notes in Mathematics 113, Springer-Verlag, Berlin-New York, 1970, iii+99 (in German).
MR 0262149 |
Zbl 0191.51403