Previous |  Up |  Next

Article

References:
[1] Czédli G., Freese R.: On congruence distributivity and modularity. Algebra Universalis 17 (1983), 216-219. MR 0726275 | Zbl 0548.08003
[2] Czédli G., Horváth E. K.: Congruence distributivity and modularity permit tolerances. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math., to appear. MR 1967338 | Zbl 1043.08002
[3] Czédli G., Horváth E. K.: All congruence lattice identities implying modularity have Mal’tsev conditions. Algebra Universalis, to appear. Zbl 1091.08007
[4] Day A.: A characterization of modularity for congruence lattices of algebras. Canad. Math. Bull. 12 (1969), 167-173. MR 0248063
[5] Day A.: p-modularity implies modularity in equational classes. Algebra Universalis 3 (1973), 398-399. MR 0354497 | Zbl 0288.06012
[6] Day A., Freese R.: A characterization of identities implying congruence modularity. I. Canad. J. Math. 32 (1980), 1140-1167. MR 0596102 | Zbl 0414.08003
[7] Freese R., McKenzie R.: Commutator theory for congruence modular varieties. London Mathematical Society Lecture Note Series, 125, Cambridge University Press, Cambridge, 1987. iv+227. MR 0909290 | Zbl 0636.08001
[8] Freese R., Nation J. B.: 3,3 Lattice inclusions imply congruence modularity. Algebra Universalis 7 (1977), 191-194. MR 0434906 | Zbl 0384.08006
[9] Gedeonová E.: A characterization of p-modularity for congruence lattices of algebras. Acta Fac. Rerum Natur. Univ. Comenian. Math. Publ. 28 (1972), 99-106. MR 0313169 | Zbl 0264.06008
[10] Grätzer G.: Two Mal’cev-type theorems in universal algebra. J. Combinatorial Theory 8 (1970), 334-342.
[11] Gumm H. P.: Geometrical methods in congruence modular algebras. Mem. Amer. Math. Soc. 45, 286 (1983), viii+79. MR 0714648 | Zbl 0547.08006
[12] Herrmann C., Huhn A. P.: Zum Begriff der Charakteristik modularer Verbände. Math. Z. 144 (1975), 185-194. MR 0384630 | Zbl 0316.06006
[13] Herrmann C., Huhn A. P.: Lattices of normal subgroups which are generated by frames. In: Lattice Theory, Proc. Conf. Szeged 1974, Coll. Math. Soc. J. Bolyai 12, North-Holland, Amsterdam 1976, 97-136. MR 0447064
[14] Huhn A. P.: Schwach distributive Verbände. I. Acta Sci. Math. (Szeged) 33 (1.972), 297-305 (in German). MR 0337710 | Zbl 0536.08002
[15] Huhn A. P.: On Gratzer's problem concerning automorphisms of a finitely presented lattice. Algebra Universalis 5 (1975), 65-71. MR 0392713
[16] Hutchinson G., Czédli G.: A test for identities satisfied in lattices of submodules. Algebra Universalis 8 (1978), 269-309. MR 0469840
[17] Jónsson B.: Algebras whose congruence lattices are distributive. Math. Scandinavica 21 (1967), 110-121. MR 0237402
[18] Jónsson B.: Congruence varieties. Algebra Universalis 10 (1980), 355-394. MR 0564122
[19] McKenzie R.: Equational bases and nonmodular lattice varieties. Trans. Amer. Math. Soc. 174 (1972), 1-43. MR 0313141
[20] Mederly P.: Three Mal’cev type theorems and their application. Mat. časopis SAV 25 (1975), 83-95. MR 0384650 | Zbl 0302.08003
[21] Nation J. B.: Varieties whose congruences satisfy certain lattice identities. Algebra Universalis 4 (1974), 78-88. MR 0354501 | Zbl 0299.08002
[22] Neumann W. D.: On Malcev conditions. J. Austral. Math. Soc. 17 (1974), 376-384. MR 0371781 | Zbl 0294.08004
[23] Pálfy P. P., Szabó, Cs.: An identity for subgroup lattices of abelian groups. Algebra Universalis 33 (1995), 191-195. MR 1318983 | Zbl 0820.06003
[24] Pixley A. F.: Local Malcev conditions. Canad. Math. Bull. 15 (1972), 559-568. MR 0309837 | Zbl 0254.08009
[25] Snow J. W.: Mal’tsev conditions and relations on algebras. Algebra Universalis 42 (1999), 299-309. MR 1759488 | Zbl 0979.08004
[26] Taylor W.: Characterizing Mal’cev conditions. Algebra Universalis 3 (1973), 351-397. MR 0349537 | Zbl 0304.08003
[27] Wille R.: Kongruenzklassengeometrien. Lecture Notes in Mathematics 113, Springer-Verlag, Berlin-New York, 1970, iii+99 (in German). MR 0262149 | Zbl 0191.51403
Partner of
EuDML logo