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A b s t r a c t 

Based on a property of tolerance relations, it was proved in [3] that for 
an arbitrary lattice identity implying modularity (or at least congruence 
modularity) there exists a Mal'tsev condition such that the identity holds 
in congruence lattices of algebras of a variety if and only if the variety 
satisfies the corresponding Mal'tsev condition. However, the Mal 'tsev 
condition constructed in [3] is not the simplest known one in general. 
Now we extend the result of [3] from tolerances to reflexive compatible 
relations. This leads to a construction of simpler Mal'tsev conditions 
for lattice identities implying modularity Notice that Day terms and 
Jonsson terms, as Mal 'tsev conditions, are just particular cases of the 
general construction. 

K e y w o r d s : Congruence modulari ty, Ma l ' tsev condi t ion, lattice 
identity, tolerance rela t ion, Day terms, Jonsson terms. 

2000 M a t h e m a t i c s Subjec t Classification: 18A05, sec. 20M99 

"Partially supported by the NFSR of Hungary (OTKA), grant no. T034137 and T026243, 
and also by the Hungarian Ministry of Education, grant no. FKFP 0169/2001. 

43 



44 G. Czédli, E. K. Horváth 

1 Introduction 

It is an old problem if all congruence lattice identities are equivalent to Mal'tsev 
(=Mal'cev) conditions. In other words, we say that a lattice identity A can 
be characterized by a Mal'tsev condition, or A has a Mal'tsev condition, if 
there exists a Mal'tsev condition M such that, for any variety V, A holds in 
congruence lattices of all algebras in V if and only if M holds in V; and the 
problem is if all lattice identities can be characterized this way. This problem 
was raised first in Gratzer [10], where the notion of a Mal'tsev condition was 
defined and its importance was pointed out. A strong Mal'tsev condition for 
varieties is a condition of the form "there exist terms ho,..., hk satisfying a set 
£ of identities" where k is fixed and the form of £ is independent of the type 
of algebras considered. By a MaVtsev condition we mean a condition of the 
form "there exists a natural number n such that Pn holds" where the Pn are 
strong Mal'tsev conditions and Pn implies Pn+r for every n. The condition uPn 

implies Fn+i" is usually expressed by saying that a Mal'tsev condition must be 
weakening in its parameter. (For a more precise definition of Mal'tsev conditions 
cf. Taylor [26] or Neumann [22].) The problem was repeatedly asked by several 
authors, including Taylor [26], Jonsson [18], Freese and McKenzie [7], and Snow 
[25]. 

Certain lattice identities have known characterizations by Mal'tsev condi­
tions. The first two results of this kind are Jonsson's characterization of (congru­
ence) distributivity by the existence of Jonsson terms, cf. Jonsson [17], and Day's 
characterization of (congruence) modularity by the existence of Day terms, cf. 
Day [4]. Since Day's result will be needed in the sequel, we formulate it now. 
For n > 2 let (Dn) denote the strong Mal'tsev condition "there are quaternary 
terms mo,. •. , mn satisfying the identities 

mo(x,yyz,u) = x, mn(x,y,z,u) =u, 

mi(x, y,y,x) = x for i = 0 , 1 , . . . , n, 

mi(x,x,y,y) = m i + i (x ,x ,H ,u ) for i = 0 , 1 , . . . ,n, i even, 

mi(x,y,y,z) =mi+i(x,yiy,z) for i = 0, l , . . . , n , i odd". 

Now Day's celebrated result says that a variety V is congruence modular iff the 
Mal'tsev condition "(3n)(Dn)" holds in V. 

Jonsson terms and Day terms were soon followed by some similar charac­
terizations for other lattice identities, given for example by Gedeonova [9] and 
Mederly [20], but Nation [21] and Day [5] showed that these Mal'tsev condi­
tions are equivalent to the existence of Day terms or Jonsson terms; the reader 
is referred to Jonsson [18] and Freese and McKenzie [7] (Chapter XIII) for more 
details. 

The next milestone is Chapter XIII in Freese and McKenzie's book [7]. Let us 
call a lattice identity A in n2 variables a frame identity if A implies modularity 
and A holds in a modular lattice iff it holds for the elements of every (von 
Neumann) n-frame of the lattice. Freese and McKenzie showed that frame 
identities can be characterized by Mal'tsev conditions. Their approach is based 
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on commutator theory Although that time there was a hope that their method 
combined with [16] gives a MaPtsev condition for each A that implies modularity, 
cf. [7] (page 155), Palfy and Szabo [23] destroyed this expectation. 

The next step, motivated by Gumm's Shifting Principle [11], is based on 
elementary properties of tolerance relations. To formulate the result we recall 
a notion from Jonsson [18]. A lattice identity A is said to imply modularity 
in congruence varieties, in notation A |=c modularity, if for any variety V if 
all the congruence lattices Con(A), A G V, satisfy A then all these lattices are 
modular. If A implies modularity in the usual lattice theoretic sense then of 
course A |=c modularity as well. However, it was a great surprise by Nation [21] 
that A f=c modularity is possible even when A does not imply modularity in the 
usual sense. Jonsson [18] gives an overview of similar results. We mention that 
there is an algorithm to test if A f=c modularity, cf. [1], which is based on Day 
and Freese [6]. 

Now it was proved in [3] that if A is a lattice identity such that A \=c mod­
ularity then A can be characterized by a MaVtsev condition. The proof of this 
fact is relatively elementary and easy but the Mal'tsev conditions are far from 
being optimal in most of those cases where Mal'tsev conditions were previously 
known. 

The purpose of this paper is to give an algorithm which associates essen­
tially better Mal'tsev conditions with lattice identities implying modularity in 
congruence varieties. The price we pay for better Mal'tsev conditions is that the 
present approach is a bit more complicated than that in [3]. The starting point 
of our investigation is that not only tolerances but also reflexive compatible 
relations have a nice property in congruence modular varieties. 

2 The Wille-Pixley algorithm 

Let { a i , . . . , a & } be a fixed set of variables. (Later these variables will be 
substituted by reflexive compatible relations.) Let Ck denote the set of terms 
in operations n (intersection) and o (composif jn of relations) on the variables 
a i , . . . , a / , . Given p in C&, we define a sequence Fo(p), Fi(p), . . . of sets of 
formulas. Each of these formulas will be of the form (xi,Xj) G r for some 
r £ Ck where Xi and Xj belong to a new set {xi : i > 1} of variables. If r is a 
variable, i.e., if r 6 {au . . . , a / J then (xil Xj) G r will be called a final formula. 
Notice that the Xi will represent elements of algebras later. 

Now Fo(p) is the singleton consisting of (xi-x.) G p. For j > 0, if all 
formulas in Fj__1(p) are final then let Fj(p) = Fj_i(p). Otherwise choose a 
formula (_*,_*) G r i n Fj-i(p) which is not final1, and the definition of Fj(p) 
depends on the form of r. If r = Ti fl r2 then 

Fj(p) := (Fj-1(p)\{(xi,xi) er}) L){(_i,x*) £ ru (xhx£) G r 2 } . 

1 There can be several formulas which are not final but, up to equivalence (namely, up to 
the order of terms and their variables), any choice leads to the same Mal'tsev condition. 
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If r = Ti o r2 then let m be the smallest positive integer such that xm does not 
occur in any formula of Fj-\(p) and define 

Fj (p) := (Fj-i(p) \ {(xiyXi) e r}j U {(xuxm) e n , (xmix£) G r2}. 

Clearly, there is a smallest t such that Ft(p) — Ft+i(p) and we define F(p) = 

^(pJ-

Exaxnple 1 If k = 3 a n d p = a i f l ( a 2 o ( a i n a 3 ) o a 2 ) , then F(p) = {(x\,x2) G 

oti, (x\,x%) e a2 , (x3 ,x4) G a i , (x*3,rc4) G a3 , (x4,;r2) G a 2 } . 

Given an algebra .4, the set Relr(-4) of all reflexive and compatible relations 
on A (in other words, all subalgebras of A2 including the diagonal subalgebra) 
has intersection, inverse and composition operations as usual: for $ and ^ in 
Relr(^4), (x,y) G $ o vj/ iff there exists a z G i with (x, z) G $ and (z,H) G * , 
and (:T,H) G $~"1 iff (H,x) G $. Now let p,q G C&. The inclusion formula (more 
precisely, the {n, o}-inclusion) p C g is said to be satisfied for congruences of 
A if p C q holds, in Relr(^4) whenever congruences / ? i , . . . , /?& G Con(A) replace 
the variables a i , . . . , ^ , respectively If this is the case for all algebras A in a 
given variety V then we say that p C q holds for congruences of V. The Mal'tsev 
condition U(p C q) we are going to define will characterize this property of V. 

Compute F(p) and F(q), and modify F(q) to obtain F(q) by replacing each 
variable X{ by the variable fi in every formula belonging to F(q). Suppose that 
{x\,..., xm} and {f\,..., / s } are the sets of variables appearing in the formulas 
of F(p) and F(q), respectively, excluding the variables a i , . . . , a& of Ck> Clearly, 
m equals two plus the number of composition operators in p, and similarly for s. 

Now construct partitions 0 i , . . . , 0& of {x\,..., xm} corresponding to the 
variables a i , . . . , a & of p and q as follows: for each £, 1 < £ < k, 0^ is the 
smallest partition of { # ! , . . . , xm} such that x^ and Xj belong to the same block 
of 0^ for every formula (xi, Xj) G ai belonging to F(p). If at does not occur in 
p then 0^ is the discrete partition {{x{} : 1 < i < m}. For any partition 0 of 
{x\,..., xm} and 1 < i < m, let 0(x'i) denote Xj where j is the smallest integer 
such that Xj and X{ belongs to the same block of 0 . 

Example 1 (continued) If p is as before then 0 i = {{x\,x2}, {x3, x4}}, 
02 = {{x\,x3}, {x2,xA}} and 0 3 = {{ir3 ,£4}, {x\}, {x2}}. 

Now let U(p C q) stand for the following strong Mal'tsev condition: "there 
exist m-ary terms f\, / 2 , . . . , f8 satisfying the identities 

fi(x\,x2,...,xm) = ari, f2(x\,x2,...,xm) = ar2, 

and for each formula (fi, fj) G a^ in F(q) the identity 

/i(e<(&i), • • •," &e(xm)) = / i (6 / (x i ) , . . . , §*(&m)).w 

Example 1 (continued) If p is as before and O = (ai D a2) o (a\ D a 3) 
then U(p C g) is the following condition: "There are quaternary terms / i , / 2 , / 3 
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satisfying the identities 

/ l(Xl-X2-2:3,34) ~ X l ' /2(^1,X-2,X3,.X4) = X2, 

/ l ( X i , X i , X 3 , X 3 ) = / 3 ( ^ 1 , ^ 1 , ^ 3 , X 3 ) , 

/ l ( £ l , £ 2 , £ l , £ 2 ) = /3(-Cl,-C2,a;i,X2) 

/ 3 (x ' i ,Xi ,X 3 , .T 3 ) = /2( .Xi,Xi, .T3 ,X3) , 

/ 3 (xi ,x 2 ,x 3 ,2 : 3 ) = / 2 (X- I ,X 2 , .T 3 , .T 3 ) . " 

Theorem 1 (Wille [27] and Pixley [24]) Given an {n, 0}-inclusion p C g and 
a variety V, p C q holds for congruences of V if and only if V satisfies the strong 
MaVtsev condition U(p C q). 

Now let p be a lattice term on the variables a i , . . . , OJ&, and let k > 2 be 
an integer. We define a term p(k> in Ck via induction as follows. If p = a.̂ . a 
variable, then let p(A;) = p. If p = r A s then let p(fc) = r^fc) n s^. Finally, if 
p = r V 5 then let p^) = r^ ) o s^) o r^) o $(fe) o • • • (with k factors on the right). 

Theorem 2 (Wille [27] and Pixley [24]) Suppose p is an {n, o}-terrn and q is 
a lattice term on the variables a\,..., a*.. Then for any variety V. the inclusion 
P - Q holds for congruences ofV if and only ifV satisfies the MaVtsev condition 
"there exist an integer k > 2 such that U(p C qW) holds". 

Notice that (3k) (U(p C q^)) is indeed a Mal'tsev condition, for U(p C qW) 
implies U(p C a^1)) for any k>2. 

3 Reflexive relations in congruence modular varieties 

Given an algebra A and $ G Relr(^4), the least congruence of A containing 
$ will be denoted by con($). Similarly, $* will stand for the least transitive 
relation containing $. It is easy to see that 

$* = ( J ($ o $ o . • •) (k factors) belongs to Relr(-4) (1) 
keN 

and 
con($) = ($ o $~x)* = [ J (($ o S"1) o ($ o $~1) o • • •). (2) 

fceiv 

If T G Relr(-4) happens to be symmetric, which means T"1 = T, in other words, 
if T belongs to Tol(.4), the set of tolerance relations of the algebra A, then the 
formula simplifies: 

con(r) = T* = ( J (F o T o • • •) (k factors.) (3) 
keN 

There are straightforward but useful connections among V, taken in the con­
gruence lattice Con(A) of A, o and con( ), namely, for any <!>,\!/ E Relr(-4) we 
have 

con(<l> o $) = con($ o * o &'1) = con($) V con($). (4) 
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Unfortunately, there is no similar result for intersection. For example, even 
when Con(A.) is a three element chain, a G Con(A.) and F G Tol(A), con(a n T) 
may be different from con(a) ncon( r ) , cf. [2]. Hence the following theorem is a 
little bit surprising. 

Theorem 3 Let A be an algebra in a congruence modular variety, let 
T G Tol(A) and $, * G Relr(-4). Then 

con(r n $) = con(r) n con($), 

and 
con(($ o q>~x) n * ) = con($ n (* o ^r"~1)) = con($) n con($). 

P roof Since A belongs to a congruence modular variety, we have Day terms, 
i.e., quaternary terms ran,..., mn satisfying the identities given in the introduc­
tion. We can assume that n is even. First we show that 

r n f ^ r 1 ) ccon(rn$). (5) 

Suppose (a,b) G T D ($ o $ _ 1 ) , then there exists an element c G A with 
(a,c)y(byc) G $ and, of course, (a,b),(b, a) G V. We define elements di = 
ra7;(a,c,c, b) and e$ = ra;(a, a,b, b), 0 <i <n. Then (ei,di) G $ for all i. Using 
the trick 

ê  = ra,j(a,a, 6,6) = ra^(ra^(a,c,c,a),a,b,mi(b,c,c,b)) F 

mi(mi(a, c, c, b), a, a, ra^(a, c, c, b)) = ra^(a, c, c, b) = d ,̂ 

we obtain (e;,d;) G V for all i. Hence (e^dj) G V n $ and (e?;,dj), (d^e^) G 
con(T n $) . On the other hand, e; = e^+i for i even and dj = dj+i for j odd. 
Hence all the pairs 

(a,e0) = (d0,e0) = (a,ex), (ei,di) = (ei ,d2) , (d2,e2) = (d2 ,e3), 

(e3 ,d3) = (e3 ,d4), (d4,e4) = (d4 ,e5), (e5,d5) = (e5 ,d6), . . . , 

(d n _ 2 , e n _ 2 ) = (d n _ 2 , e n _ i ) , (e n _i ,d n _i ) = (e n _i ,d n ) = (en_i,b) 

belong to con(r n $) . So (a, 6) G con(r H $) by transitivity. This proves (5). 
Now we define $ i = $ o <f>~1 and $ j + i = $ j o $ 7 : for j > 1. We claim that, 

for all j > 1, 
r n $ j C con(rn^). (6) 

For j = 1 this is just (5). If (6) holds for some j then, by (5) for <£j instead of 
$ and (6) for this j , we obtain 

r n $ J + i ^ r n f t o ^ - 1 ) c con(rn^) c con(con(rn$)) = con(rn*), 

proving (6) for j -f 1. Thus (6) holds for all j . Clearly, &J1 = $ j for J > 1. 
Hence $ j = $i 'o $-_ o . . . o $ 1 ? with 2j~l factors on the right, for all j > 1, and 
we obtain from (2) that con($) = Uj>i ®j- Hence we conclude from (6) that 

r n con($) = r n | j $j = | j (r n *,-) c con(r n $), 
i>i i>i 
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i.e., 

rncon($) c con(rn*). (7) 

Now, using (7) first for con($) and T and then for F and $, we obtain 

con(F) n con($) = con($) n con(r) C con(con($) n V) 

= con(r n con($)) C con(con(r n $)) = con(V n $ ) . 

The converse inclusion comes from the fact that con is a monotone operator. 
This proves the first formula of Theorem 3. Since $ o vj>-1 E Tol(A) and 
con(^) = con(\I> o ^ _ 1 ) , and similarly for <£ instead of # , the rest of Theo­
rem 3 follows evidently. • 

4 How to get rid of joins? 

In order to make use of Theorem 2 for a lattice identity p < q, we have to get 
rid of joins in p. This can be done in various ways, and this freedom is built in 
the following definition. 

Let Ck be the set of {n, o}-terms on the variables a\,..., a&5 as before. For 
p E Ck we define p~l E Ck via induction as follows. (The idea is that 6L\ , . . . , au 
will be substituted by symmetric relations.) If p is a variable then p~l = p. If 
p = r n 5 then p~l = r~1 n s~1. If p = r o s then p~1 = s"1 o r _ 1 . This way 
p~l is defined and belongs to Ck for each p ~ Ck-

Now, for any lattice term p on the variables CKI, . . . ,a& we define a subset 
it(p) of Cfc. The idea is that (4) and Theorem 3 should be applicable for 
members of R(p). If p is a variable then R(p) — {p}. li p ~ r As then 

R(p) = R(r As) = {f n s : f E i?(r), g E J?(s) and f_1 = f} 

U{f n S : f E -R(r), 5 E -R(s) and 5 _ 1 = 5} 

U{f f l ( so s"1) : f E R(r), s E i?(s)} 

U{(f o f~l) n 5 : f E i?(r), g E -R(s)}. 

If p = r V s then 

J?(p) = R(r Vs) = { f o s : f E I?(r) and s E i?(s)} 

U{f o s o f_1 : f E it(r) and s E I2(s)} 

U{s o f o ;5_1 : f E it(r) and s E I2(5)}. 

Notice that if R(r) U i?(s) contains a symmetric term then so do G(r A s) and 
G(r V s). Since variables are symmetric, we conclude that R(p) contains a sym­
metric term for any lattice term p. We will prefer the shortest members of 
R(p). Somehow the whole question is about symmetry, for symmetric subterms 
allow shorter formulas, but longer formulas are needed to produce symmetric 
subterms. Notice also that p(3) E R(p) holds for any lattice term p. 
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5 Main Theorem 

In this section we formulate and prove our main result, while the last section 
will be devoted for examples and comparison with previous results. 

T h e o r e m 4 Let X : p < q be a lattice identity such that X f=c modularity, and 
letp E R(p). Then for any variety V the following two conditions are equivalent. 

(a) For all A £ V. A holds in the congruence lattice of A. 
(b) V satisfies the MaVtsev condition "there is ann > 2 such that U(p C q^) 

and D n hold". 

Proof Suppose (a). A straightforward induction on the length of p shows that 
for any A E V and any a i , . . .,ak E Con(A), p(au.. .,ak) C p(au... ,ak). 
Hence the inclusion p C q holds for congruences of V and Theorem 2 gives an 
integer rii > 2 such that U(p C g(nO) holds in V. Since A (=c modularity, 
V satisfies D n 2 for some U2 > 2 by Day's result. Therefore (b) holds with 
n = max{ni,n2}. 

Suppose (b). By Day's result, V is congruence modular. It follows from 
Theorem 2 that the inclusion p C q holds for congruences of V. This means 
that for any A E V and a i , . . . , a& E Con(A), p(ai . . . ,ak) C r/(ai . . . ,a&), in 
short p(a) C q(a). Hence 

con(p(a)) C con(O(a)). 

Since con(g'(a)) = a (a), it suffices to show that, for any lattice term p and any 
peR(p), 

con(p(a)) = p ( a ) . (8) 

We verify (8) via induction on the length of p. If v is a variable then (8) is 
trivial. 

If p = r A s then there are several cases. If, say, f E R(r) is symmetric and 
p = f H s then using Theorem 3, the induction hypothesis for r and 5, and the 
easy fact that symmetric terms in Ck give symmetric relations in Relr(A) when 
congruences are substituted for variables we conclude 

con(p(a)) = con(f (a) D s(a)) = con(f (a)) fl con(s(a)) 

= r(a) n s(a) = p(a), 

indeed. When p = (fof~'1)ns and in other cases of p = r A s Theorem 3 applies 
similarly. 

If p = r V s then (4) and the induction hypothesis applies easily; for example, 
if p = f o s o f~1 then 

con(p(a)) = con(f (a) o §(a) o f(a)~1) = con(f (a)) V con(s(a)) 

= r(d) Vs(a) = p(a). 

This proves (8) and the Theorem. • 



Mal'tsev conditions 51 

6 Applications and comments 

Corol lary 1 (Jonsson [17]) A variety V is congruence distributive if and only if 
there is an n > 2 and there are ternary V-terms t$,. . .,tn satisfying the identities 
t0(x,y,z) = x, tn(x,y,z) = z, U(x,y,x) = x for i = 0 ,1 , . . . ,n} U(x,x,z) = 
ti+\(x, x, z) for i = 0, l , . . . , n — 1, i even, and ti(x,z,z) = ^ + i ( x , z,z) for 
i = 0,1,... ,n — 1, i odd. 

Proof The distributive law is a i A ( a 2 V a 3 ) < (ai Aa 2 ) V(ai Aa3). Take 
p = a i Pi (a2 o as) G H(ai A(a2 Va3)), apply Theorem 3 and interchange the 
last two variables in all terms. This way we obtain that the conjunction of 
the existence of Jonsson terms and the existence of Day terms characterizes 
distributivity. However, if we have Jonsson terms, then we automatically have 
Day terms; indeed, Jonsson terms trivially give Gumm terms, cf. Theorem 7.4 
in Gumm [11], therefore V is congruence modular, so we have Day terms. • 

Let us say that a Mal'tsev condition U(p C q) is ra-ary if the term symbols 
in it are ra-ary. An easy induction shows that ra equals two plus the number of 
composition operators o in p. For example, D n is a 4-ary Mal'tsev condition. 
It is reasonable to say that Mal'tsev conditions with smaller arities are sim­
pler. Now we compare the output of our algorithm with some classical results. 
Consider the following lattice terms: 

n n n 

pi =(3A\J ah Ql = \/(/^AVa0 
i=0 j=Q i==o 

p2 = ( a V f t ) A ( a V f t ) , q2 = a v ( ( a Vft) A(o Vf t ) A(ft Vf t ) ) , 

P 3 = a A ( ( a A f t ) V ( a A f t ) V ( f t A f t ) ) , qs = (a Af t ) V(a Af t ) , 

p4 = (aV(/?A7))A(7V(aA/3)), 

q4 = (aA(7V(aA/3)) ) v ( 7 A (a V(/3 A 7 ) ) ) , 

and the lattice identities \ : Pi < qi, i = 1,2,3,4. Mal'tsev conditions for 
Xi, i = 1,2,3 resp. for i = 4 were given by Mederly [20] resp. Gedeonova 
[9]. Notice that Mederly and Gedeonova use equality rather than inequality in 
these identities, but this does not make any difference modulo lattice theory. 
Notice also that Ai is the n-distributive law introduced by Huhn [14], A2 is 
called ^-modularity introduced by McKenzie [19], A3 is the dual of A2, and A4, 
called p-modularity, is taken from Gedeonova [9]. The following statement is 
straightforward. 

E x a m p l e 2 (a) Since p[ G R(pi), there is an (n + 2)-ary MaVtsev condition 
characterizing n-distributivity; Mederly [20] also gave an (n -f 2)-ary one. 

(b) Since (a o ft o a) f! (a o f32) G R(p2), there is a 5-ary MaVtsev condition 
characterizing l-modularity; Mederly [20] gave a 6-ary one. 

(c) Since afl ( (aHf t )o (an /3 2 )o ( f t Hft)) G R(ps), there is a 4-ary MaVtsev 
condition characterizing dual l-modularity; Mederly [20] gave a 7-ary one. 
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(d) Since (a D (ft o 7)) n (7 o (a D /?) o 7) E R(PA), there is a 5-ary MaVtsev 
condition characterizing p-modularity; Gedeonovd [9] gave a 6-ary one. 

Let us emphasize that the above example is only to illustrate Theorem 4 and 
a much stronger statement is known. Namely, Nation [21] proved that a variety 
V is congruence n-distributive if and only if it is congruence distributive, Day 
[5], and Freese and Nation [8] showed that any of A2, A3 and A4 is equivalent to 
modularity in f=c sense. Hence, thinking of Jonsson terms and Gumm terms, we 
can easily see that each of A i , . . . , A4 can be characterized by a ternary Mal'tsev 
condition. 

For frame identities Theorem 4 does not give the best known result either. 
Let 

p 5 = ((a A/?) V(7A<5)) A ((a A 7) V(/5A<5)). 

Example 3 Let g5 be any lattice term on the variables a, ,5,7,8. Then p§ < 
g5 can be characterized by a 4-ary MaVtsev condition while the best MaVtsev 
condition deduced from Theorem 4 is 5-ary. 

Proof It is proved in Herrmann and Huhn [12] that p& < g5 is a so-called 
diamond identity. Combining Herrmann and Huhn [13], Lemma 1.7, and Huhn 
[15] we obtain that Huhn diamonds and von Neumann frames are equivalent 
in modular lattices. Hence, as one would expect, the method of Freese and 
McKenzie [7], Chapter XIII, works for p5 < a5 and we obtain that p5 < o5 holds 
for congruences of a variety if and only if p§ ' C O5 holds, whence Theorem 2 
gives a 4-ary Mal'tsev condition. • 

One may ask if con($ n $) = con($) n con(^) holds for arbitrary <£, F̂ £ 
Relr(^4) in a congruence modular variety since this improvement of Theorem 3 
would lead to much better Mal'tsev conditions of the form U(p(2' C q). Unfor­
tunately this is not the case. Indeed, if $ denotes the usual order of a lattice L 
and # = $~ 1 then OL = con($ n *) # con($) n con(^) = lL though lattices 
form a congruence modular (in fact, a congruence distributive) variety 
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