Previous |  Up |  Next

Article

References:
[1] Andres J., Gabor G., Górniewicz L.: Acyclicity of Solution Sets to Functional Inclusions. Nonlin. Anal., (to appear). MR 1894303 | Zbl 1012.34011
[2] Aubin J. P., Cellina A.: Differential Inclusions. Set-valued Maps and Viability Theory. Springer Verlag, Berlin, 1984. MR 0755330 | Zbl 0538.34007
[3] Benassi C., Gavioli A.: Approximation from the exterior of a multifunction with connected values defined on an interval. Atti Sem. Mat. Fis. Univ. Modena 42 (1994), 237-252. MR 1282339 | Zbl 0873.54021
[4] Benassi C., Gavioli A.: Approximation from the exterior of multifunctions with connected values. Set-Valued Analysis 2 (1994), 487-503. MR 1308481 | Zbl 0826.26012
[5] Castaing C., Valadier M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics 580, Springer Verlag, Berlin, 1977. MR 0467310 | Zbl 0346.46038
[6] De Blasi F.: Characterization of certain classes of semicontinuous multifunctions by continuous approximations. J. Math. Anal. Appl. 106 (1985), 1-18. MR 0780314
[7] De Blasi F. S., Myjak J.: On the solution sets for differential inclusions. Bull. Polish Acad. Sci. 33 (1985), 17-23. MR 0798723
[8] Deimling K.: Multivalued Differential Equations. De Gruyter series in Nonlinear Analysis and Applications, Berlin, 1992. MR 1189795 | Zbl 0820.34009
[9] El Arni A.: Multifonctions séparément mesurables et séparément sémicontinues inférieurement. Doctoral thesis, Université des Sciences et techniques du Languedoc, Montpellier, 1986.
[10] Gavioli A.: Approximation from the exterior of a multifunction and its applications in the "sweeping process". J. Differential Equations 92, 2 (1991), 373-383. MR 1120911 | Zbl 0744.41018
[11] Górniewicz L.: Topological approach to differential inclusions. In: Topological Methods in Differential Equations and Inclusions, ed. by A. Granas and M. Frigon, Kluwer Academic Publishers, Dordrecht-Boston-London, 1995. MR 1368672
[12] Haddad G.: Topological properties of the sets of solutions for functional differential inclusions. Nonlinear Anal. 5 (1981), 1349-1366. MR 0646220 | Zbl 0496.34041
[13] Ionescu Tulcea C.: On the approximation of upper semicontinuous correspondences and the equilibrium of generalized games. J. Math. Anal. Appl. 136 (1988), 267-289. MR 0972598
Partner of
EuDML logo