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Approximation from the Exterior of 
Caratheodory Multifunctions 
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Abstract 

We approximate a globally measurable multifunction F(t,x) which 
takes compact values in an euclidean space by means of a decreasing 
sequence of globally measurable multifunctions Fn(t,x) which are locally 
lipschitzian with respect to x, in the following cases: F(£, •) is upper 
semicontinuous and takes connected values, or F(£, •) is continuous. 
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1 Introduction 

The results on the approximation from the exterior of a globally measurable mul­
tifunction F(t, x) which is upper semicontinuous with respect to x were mainly 
developed in the case in which F takes convex values [6,9,10,12-14], because of 
their applications in the qualitative study of differential inclusions [7,8-§7,ll,12]. 
Indeed, if the approximating multifunctions are locally lipschitzian with respect 
to x, the solution set corresponding to the given orientor field can be shown to 
be acyclic, under suitable assumptions. 

When the sets F(t, x) are not convex, such a kind of approximation is not 
always possible, and it could be interesting to find some general conditions under 
which F(t,x) can be approximated in the required way, i.e. by a decreasing 
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18 Carlo BENASSI, Andrea GAVIOLI 

sequence of measurable multifunctions Fn(t,x) which are locally lipschitzian 
with respect to x. As is shown in [1], such an approximation can be useful again 
in the study of the topological properties of the solution set of a differential 
inclusion. 

Our work starts from [4], where we considered the case in which F(t,x) = 
F(x) and the sets F(x) are compact, connected subsets of a euclidean space. 
In that context, we gave a positive answer to the above question, thanks to a 
suitable interpolation among subsets of R p which applies, in particular, to those 
sets which are metric expansions of compact, connected sets. 

In this paper we extend the quoted interpolation in two directions: first, 
in §2, we show that our technique can be fitted in order to deal with a wider 
class of sets, which includes the metric expansions of compact subsets of R p . 
Then, in §4, we prove that our interpolation preserves measurability in the case 
in which the given sets depend on a variable t which ranges over a measurable 
space T. Finally, in §5, we state and prove our main result, Theorem 5.1: the 
given multifunction F(t,x) is defined on a measurable subset of T x K, where 
X is a complete, separable metric space, and takes values in a euclidean space. 
Furthermore, three alternative assumptions are presented. In particular, in the 
case (i) we get the "parametrized" version of the main result of [4], which is 
exploited in [1] in order to show that the solution set of the corresponding 
differential inclusion x' G F(t,x) can be expressed as the (possibly empty) 
intersection of absolute retracts. Furthermore, in the cases (ii) or (hi), a new 
kind of result is given: if the sets F(t,x) are simply supposed to be compact, 
but F(t, x) is continuous with respect to x, the required approximation is again 
possible. 

2 Interpolation among subsets of "RP 

Definition 2.1 If (F, d) is a metric space, and C is a non-empty subset of Y, 
for every x G Y we denote by S(x; C) = i n f ^ c d(x, y) the distance of x from 
C. For every a > 0, B(x;a) will stand for the closed ball with center at x and 
radius a. If C, D are non-empty subsets of Y, the excess of C over D is defined 
by e(C, D) = sup^,-? 5(x; D), while h(C, D) = max(e(C, D),e(D, C)) stands for 
the Hausdorff distance between C and D. We recall that h is actually a distance 
on the family of all non-empty, closed and bounded subsets of Y. If C, D C Y 
and a > 0, we also introduce the following notations: 

C" = U{B(x; a)°;xe C7}, Ca = Y\(Y\ C)\ 

D CC C <=> D C Ca for some a > 0. (2.1) 

We remark that, for every a > 0, it is 0°" = 0 and Ya = Y. Throughout this 
section, Y will be the space R p , endowed with its euclidean distance d, and B 
its closed unit ball. Now we are going to recall some notions from [3]. First of 
all we introduce the family V of all lipschitzian paths 7 : [0,1] -> R p : for every 
7 £ V, we put 5(7) = 7QO, 1]), and denote by l(j) the length of 7 . If 7(0) = x 
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and 7(1) = H, we say that 7 joins x and y. If E C R p , we denote by V(E) the 
family of all paths 7 G V such that S(j) C E. 

Definition 2.2 The set E is said to be Lips chit z-connected [3, Def. 2.2] if for 
every x,y e E there exists a path 7 G 7 (̂15) which joins x and H; £ is said to 
be arcwise bounded if there exists a constant L > 0 such that any two points x 
and y e E can be joined by a path 7 G P ( J B ) with length l(j) < L; the greatest 
lower bound of these constants L will be denoted by p(E). A path rj G V(E) is 
said to be minimal in E if, for every path 7 G 'P(.E) which joins 77(0) and rj(l), 
it is /(r,) < Z(7). 

We denote by A the family of all closed, arcwise bounded subsets of R p . If 
E e A, for every x,y e E we put 

cte(-r, y) = min {/(7); 7 G P(JE), 7(0) = x, 7(1) = H}. 

This minimum surely exists, and dE is a distance on E, which will be called the 
intrinsic distance on E (see Prop. 2.5 of [3]). Of course, it is always dE > d\ExE, 
and the equality holds if and only if E is convex. Given a closed set E C R p , we 
denote by K(E) the family of all compact, non-empty subsets of E. We remark 
that V(E) is never empty (unless JE7 -= 0), since it contains all constant paths 
7 = x, with x e E. Then, for all C G K(E), a > 0, we put 

Qa(C- E) = U{5(7); 7 e V(E), 7 (0) G C, Z(7) < a}. (2.2) 

If FJ G A, we point out that Qa(C;E) = E a s soon as a > p(-E). Furthermore, 
in any case, C C Qa(C]E) C C + aB. If C = {x} we shall write Qa(a;;F;). 
If I? G ,4, it is easy to see that Qa(x;E) = {y G E : dE(x,y) < a). We also 
define in E an intrinsic Hausdorff distance, in the following way: for every C, 
D eK(E) we put 

M C , D ) = m i n i a > 0 : Qa(C; E) D D, Qa(D; E)DC}. 

Since dE > d\ExE<> it is easy to argue that the same relation holds between hE 
and the restriction of h to K(E) x K(E). Furthermore, for all C, D e K(E), 
a , b > 0 , 

hE(Qa(C')E), Qb(D;E)) < hE(C,D) + \a - b\. (2.3) 

Property (2.3) is shown in Theorem 2.10 of [4] in the case in which C and D 
are compact and connected and E G A: however, it is easy to see that the proof 
works even if C and D are only compact, and E is closed. Now we are going 
to recall a procedure given in [4], which relies on the transformation (2.2), and 
allows to "interpolate", under suitable conditions, connected subsets of R p . To 
this end we put forward some notions which were introduced in [4]. 

Definition 2.3 Let J7 be a family of non-empty subsets of R p , Z a set of 
indexes, X the family of all its finite subsets. For every I G 2 , let ^rj(I) be a 
given set of mappings I —> T (let us say the admissible families of Tl), A (I) the 
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set of all mappings A : I ~> [0,1] such that J2iei A* == 1. A wheighed operator 
on T is a mapping ft : D ( ^ ) -> T, where D ( ^ ) = U / € l (.Fo(I) x A(I)). We say 
that V(T) is the domain of ft, or also the set of the weighed families \[> which 
are admissible for ft in T. 

When # G D(JF) we shall write # = ( A , A ; ) i G / , ft# = ftiG/(A, A;). If 
Aj = 0 on a set J C I we shall also adopt, with an obvious meaning, the 
following notations: ( D ^ A ^ ^ j , ft^j(JDi,A«). 

Definition 2.4 A weighed operator ft : V(T) -+ T is said to be a stable mean 
operator on T if, for every I G X and every admissible family (Di)i^i, the 
following properties hold: 

(fti) flieI(Di; \i) = tti^j(Di; \i) whenever \j = 0; 

(ft2) Q>i£i(Di; \i) = .Dj whenever \j = 1; 

(ft3) h(QieI(Di;\i),rti€l(Di;ui)) < LmaxiG/|Ai - ^ | , /Or anu A,*/ G A(I), 
where L is a positive constant which depends on the sets Df, 

(ft4) for every A G A(I) it is n ^ / A C i}ieI(Di; \i) C UieiDt. 

If /F = A, a family (Di)i^j will be called admissible if DiDDj ^ 0, i, j G I. Then 
D(^4) is made up by all wheighed families (Di,\i)i^i such that the previous 
relation holds. In [4, Theorem 3.3] we showed the existence of a stable mean 
operator ft : V(A) -> A: the aim of this section is to extend its domain to more 
general families of sets. 

Definition 2.5 Let 0 ^ E C Kp: we denote by U(E) the family of all con­
nected components of E; we also put %(0) = 0. If C C D C R p , the script 
C < D will mean that, for every H G T~L(D), there exists IT G H(C) such that 
K C H. We shall write C -f F> if and only if, for every K G ri(C), H G Ti(D), 
it is Is. n D ^ 0, C n H ^ 0. We also denote by £ ( £ ) the family of all compact 
subsets C of E such that C <E. 

We point out that the relation % •< D can never hold, unless D = 0. Fur­
thermore, the following properties can be easily checked: 

Proposit ion 2.6 Let C,D,E C R*>. IfC<DandD<E, then C <E. If 
C <D andC <E, then D -f- E. 

We denote by S the family of all non-empty sets E C R n such that H(E) 
is a finite subset of A If E G 5 , ft(£) = {Ku...,Kn} and C,D ^ E we 
put p(I£) = maxi p^ and hs(C, D) = max^ /i^, where, for every i G { 1 , . . . ,n}, 
pi = p(Ki) and /i^ = hK{(C n IG,-D n IQ). It is easy to check that h(C,D) < 
hs(C,D) whenever C,D <E, and 

Qa(C;E)nKi = Qa(CnKi;Ki), i = l,...,n, (2.5) 

C <Qa(C;E)<E. (2.6) 
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Theorem 2.7 For every C,D e C(E), a,b > 0. inequality (2.3) holds. 

Proof Let C,D •< E, U(E) = {Ku ...,Kn} and, for every i G { l , - . , n } , h{ = 
hKi, Vi = hi(Qa(C fl Kn Ki),Qa(D n Ki; Ki)) = hi(Q

a(C;E)nKi,Q
h(D]E)n 

Ki), where the second equality follows from (2.5). We already know that (2.3) 
holds when E, C and D are respectively replaced by Ki, CnKi, and D HK{, so 
that fa < hi(CnKi,DHKi) + |a — 6|. Now we only need to take the maximum 
over i G {1, . . . , ^ } , so as to get (2.3). D 

Definition 2.8 We say that a family (D{)iei in S is admissible if Di -f L)^ for 
any i,j G I. According to Def. 2.3, for every I G T we denote by *So(I) the set 
of all admissible families (Di)iei in S, and put D(<S) = U/G j (<So(I) x A(I)). 

Remark 2.9 Of course, in the particular case in which Di € A for every i G I, 
Def. 2.8 is equivalent to the one we gave for the family A. In any case, thanks to 
Prop. 2.6, a simple criterium in order that the given weighed family is admissible 
is the following one: There exists C C R p such that C •< Di for every i G I. 

Theorem 2.10 There exists a stable mean operator Q, : T>(S) -> S. 

Proof We proceed by induction on the number n = |I | , as in the proof of 
Theorem 3.3 of [4]. If n = 1, V(S) is nothing but S x {1}, and 0 can be 
defined as the map (D, 1) H-» D. NOW, let us suppose n > 1, take an admissible, 
wheighed family \£ = (Dt,\i)iei, with |I| = n, and put E = \JieiDi. We are 
going to define - l (^) under the inductive assumption that Q, is already defined 
on families whose number of sets is less than n. Then properties (fii)-(-l4) 
can be shown by induction. The inductive procedure, however, works with 
some additional properties: more precisely, we replace (SI3) and (O4) with the 
following, stronger conditions: 

/ i£(O i e / (I^;Aj) , f i i € / ( .D;;^) < Lmax|A; - v%\, \,v G A(I), 
iei 

nieIDi ^ nieI(Di', \{) * UieiDi, A G A (J). (2.9) 

So, let us put A* = miniG/Ai. If 2nA* > 1, we define fliei(Di;\i) = E. 
Otherwise, let J be the set of those indexes i G I such that Â  > A*, and define 
fi — (/Lj)i(Ej through the relations (1 — nA*)/ij = A« — A*, i G J. Since fi G A(J), 
and |J| < n, it is right to suppose that the set C = Qiej(Di,/j,i) is already 
defined, and satisfies the condition niejDi •< C •< Ui^jDi. On the other hand, 
thanks to (2.9), we get \JiejDi •< E, so that C •< E, and now we can define 
QieI(Di',\i) = Qa(C;E), where a = 2n\*p(E). Thanks to (2.6), property (2.9) 
holds by construction. As regards the other properties, we refer to the proof of 
Theorem 3.3 of [4], which can now easily be fitted to the present context. • 

The next result puts in evidence two important classes of sets which are 
respectively contained in S and A. 
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Proposit ion 2.11 Let C C R p compact, e > 0. K = C + eB. Then: 

(a) K G S; (b) if C is also connected, K G A. 

Proof (a) Let us put a — e/2, and pick up points x\,... ,xn G K such that 
Wi=1B(xi;a) D C. For every i e {1,.. .,n} let Ci be the connected component 
of U = C + o~B which contains Xi. Then Ci D B(xi;a), so that \Jf=1Ci D U, 
and there exists J C { l , . . . , n } such that H(U) = {C^; i G J}. On the other 
hand, the sets C\ + oB (i G J) lie in A by virtue of (b), and their union gives 
U + oB = K. Now it is enough to point out that the union of a finite number 
of sets of the family A (or more generally of S) is in S: to this end, we only 
need to consider Remark 2.7 of [4] and apply an easy inductive argument. 

(b) See [3, Prop . 2.6]. • 

Now we are going to show how the relation •< we introduced before is pre­
served by continuous transformations. To this end, we recall some notions about 
multifunctions, which will be useful also in the next sections. Let X and Y two 
given sets, 2Y the family of all subsets of Y: a mapping $ from X to 2Y will be 
called a multifunction, and simply denoted by $ : X =4 Y. Whenever A C Y, 
we denote by $~X(A) the subset of X where $(x) fl A ^ 0. 

Definition 2.12 If X and Y are topological spaces, a multifunction $ : X =t Y 
is said to be lower semicontinuous if $~1(A) is open whenever A C Y is open, 
upper semicontinuous if ^~X(A) is closed whenever 4 C F is closed. If both 
properties hold together, we say that $ is continuous. 

Proposit ion 2.13 Let X,Y be two topological spaces, § : X =XY be a contin­
uous multifunction, U, V C X. Let us adopt the same notations as in Def. 2.5, 
which make sense in any topological space, and suppose that U < V. Then 
*(17H*(V)-

Proof Let H be a connected component of $(V), and take an open set A 
and a closed set C which both contain H, but do not meet $(V) \ H. Since 
the sets $ " 1 ( i f ) , $~X(A), $~l(C) have the same intersection with V and $ 
is continuous, the set §~l(H) n V is open and closed in V, so that it can be 
expressed as the union of some connected components of V. Let K be one of 
these components: since U •< V, we can find Q G H(U) such that Q C K. 
Hence $(Q) C H: since 3>(U) C $(V ) , this actually means that the connected 
component of 3>(U) which contains the connected set $(Q) is contained in H. 

• 

3 Preliminary results about measurable multifunctions 

In the next section we are going to extend the interpolation given in Theorem 
2.10 to the case in which the sets Di depend on a parameter t G T, where T 
is a measurable space. To this end, we need many "technical" results about 
measurable multifunctions, which will be useful also in §5. We refer to [5] for 
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a lot of them, while the results at the end of the section which concern the 
behaviour of the connected components of a multifunction are less usual. From 
now on we suppose that (T, C) is a measurable space, while (Y, d) is a metric 
space. We say that a multifunction $ : T =$ Y is measurable if §~l(A) G C 
whenever A C Y is open. The domain of $ is the set of those t € T such that 
$(t) ^ 0, while its graph r(3>) is made up by those pairs (t,x) G T xY such 
that x G $(t). We also adopt the notations introduced in (2.1). From now on 
we suppose that the space Y is separable. We also recall the definition of a 
complete O-field £, given in [5]: in practice, C fulfils this condition whenever it 
is the domain of a complete, cr-additive measure fi. 

Proposit ion 3.1 Let $ : T =4 Y be measurable, a > 0. Then the following 
multifunctions are measurable: 

(a) $ ' : t H> X \ $(t) (if $ takes closed values or open values), 

(b) $:t*-> ¥(*), (c) r : M $(t)a, (d) $ a : t ^ * ( t ) , . 

Proof a) Let $ take closed values, A C Y be open: then ($')~1(J4) =T\S, 
where S is the subset of T where $(t) D A. On the other hand, from Prop 
3.2d (in which we put ty(t) = A) we get S G £, so that $ ' is measurable. If $ 
takes open values, its enough to express A as the union of a sequence of sets 
An CC A. Then Prop. 3.2e ensures that, for every n G Z+, ($ ' ) _ 1 ( ,4 n ) G £, so 
that the set (# ' ) - 1 (y l ) = U n ( $ ' ) _ 1 ( A n ) is measurable as well. 

b)-c) It is enough to notice that, whenever A is open, ^~1(A) = $~X(A) 
and ( V ) - X ( A ) = $-1(,4<7). 

(d) If we apply (a), then property (c) to $ ' , and again (a) to ( $ ' ) a , the 
assertion follows at once. • 

Proposit ion 3.2 Let $ , ^ : T =4 F be measurable multifunctions. Then, with 
an obvious meaning of the notations, the following multifunctions are measurable 

(a) $ U * ; ft) $ n ^ (if C is complete); 

(c) 3>\\I/ (if $ and Vl/ £ake respectively open and closed values, or conversely). 

Furthermore, let L,M, jN C T the sets where, respectively, $(t) D Sb(t), 

*(t) DD *(*)• *(*) n *( t ) 7- 0. T/^en; 

fa7,) z/ $ l.ake5 closed values, L G £; ft) z/ $ £akes Open values, M G £ ; 

f/J i/ $ £afces Open values, or $ and ^ £ake respectively closed and compact 
values, N G C. 

Proof a) It is enough to notice that ($ U ®)~l(A) = $~X(A) U ^~X(A). 
b) Thanks to Theorem 111.20 of [5], $ and \I> are measurable if and ony if 

r ( * ) , T ( * ) e C®B. Now its enough to notice that T($ n * ) = T($) n r(tf) 
and apply again Theorem 111.20 of [5]. 

c) Since $ \ * = ( $ ' U \£)', the assertion follows from Prop. 3.1a and 3.2a. 
d) Let A be a countable, dense subset of Y, V be the family of all closed balls 

V — B(x; a), with x G A, a G Q + . We claim that L agrees with the intersection 
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L of all sets of the kind ( T \ ^ r ~ 1 ( V ) ) U $ ~ 1 ( V ) , where V ranges over T. Indeed, 
let t G L, V € V: if tfjt) D V ^ 0, even more so it is $(£) D V ^ 0, because 
ty(i) C $(£): then t £ L. Conversely, let us suppose that t G L, take a; G $(f) 
and a sequence of balls Vn — L?(£n; o~n) G V, with n G Z + , such that o~n -» 0 as 
n -» +oo and, for every n G Z + , x G Vn: then, for every n G Z + , $(£) fl Vn ^ 0, 
so that $(t) fl 14 ^ 0, and we can find a sequence of points xn G $(t) which 
converge to x as n —y -Foe Since $(t) is closed, it must be x G $(t), so that 
t G L. Hence L = L e C. 

e) Let O-n ^ 0 and, for every n G Z + , consider the multifunction $ n : £ i-> 
$(£)<-„: thanks to the previous point, the set Mn C T where $n(t) D ty(t) is 
measurable. Now it is enough to remark that M = UnMn. 

f) Since t G T \ N if and only if %(t) C $'(£), we only need to apply Prop . 3.1a 
and 3.2d. • 

Now, let X be another metric space, denote by B its Borel a-field and con­
sider on T x X the product cr-field £ = £ eg) S . A multifunction F :T x X =$Y 
is said to be globally measurable if F_1(A) G £ whenever A is open. We also say 
that F(t,x) is measurable with respect to t if, for every x G X, the multifunction 
F(- ,#) is measurable, and that F(t,x) is continuous with respect to x if, for 
every t eT, the multifunction F(t, •) is continuous. 

Proposit ion 3.3 Let F : T x X =} Y be a multifunction which is measurable 
with respect to t &T and continuous with respect to x G X. Then F is globally 
measurable. 

Proof Let A CY be open, A = {#«; i G Z + } a dense subset of X. The assertion 
holds thanks to the following relation, which can be deduced from the continuity 
of F(t,x) with respect to x: K"1^) = f]j U* (Bfa; 1/j) x F(^xi)~

1(A)). D 

Remark 3.4 It is easy to check that, whenever F : T x X =3 Y is globally 
measurable and x : T —> Y is measurable, the multifunction t i-» F(t,x(t)) 
is measurable as well. The following result shows how this property can be 
generalized. 

Proposit ion 3.5 Let C and Y be complete, E,W : T =3 X two measurable 
multifunctions, and denote by the same scripts also their graphs. Let W C E, 
and consider a globally measurable multifunction $ : E =3 Y. For every t G T 
let us denote respectively by $^ (£) , $^(£) the union and the intersection of all 
sets of the kind $(t,x), where x ranges over W(t). Then: 

(a) $yy is measurable; (b) if $ takes closed values, $ ^ is measurable. 

Proof a) Let i C F b e open, H = (^^V)~1(A), TX be the projection (t,x) H* X. 
Then H = ?r(PV n $-1(-4))> and Theorem IIL23 of [5] entails that H G C. 

b) By De Morgan's laws, $ ^ = ( ( $ ' ) ^ ) ' . Now, thanks to Prop. 3.1a, $ ' 
is measurable, so that such is \I> = ($'w)+. On the other hand, \I> takes open 
values, so that Prop 3.1a ensures again that $ ^ = \I>' is measurable. D 
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Propos i t ion 3.6 Let L and Y be complete, E G L x B, Z a topological space. 
Let F : E =4 Y, T : T x Z =4 X be two globally measurable multifunctions. Let us 
suppose that, for every t eT, z G Z, T(t, z) C E(t), and define G : T x Z =4 Y 
by G(t,z) = F(t,T(t,z)). Then G is globally measurable in each one of the two 
following cases: 

(a) T takes open values. 

(b) T takes compact values, E(-) takes closed values, and F(t,x) is upper 
semicontinuous with respect to x. 

Proo f Let T be the Borel a-field of Z, V = L eg) T. Thanks to Theorem III.2 
of [5] it is enough to prove that G~X(U) G V whenever U C Y is closed. So, let 
U C Y be closed, and regard the set F~l(U) as the graph of a multifunction 
8 : T =3 X, with possibly empty values. Thanks to Theorem 111.30 of [5], 0 is 
measurable. Furthermore, G~~l(U) can be expressed as the set of those pairs 
(t,z) eT x Z such that 0(t) n T(t, z) ^ 0. We also remark that, in the case (b), 
8 takes closed values. Hence, in both cases, we can apply Prop . 3.2f, in which 
we replace (T, L) by (T x Z, V) and put $(t, z) = 8(t), 3/ = F, so as to conclude 
thatG-^U) eV. • 

From now on we denote by U a countable basis of open, connected subset for 
the topology of X, and by T the family of all connected subsets of Y which can 
be expressed as union of a finite number of elements of U. Whenever x £ C CY, 
the script T(x; C) will stand for the connected component of C which contains 
x, while T(x; C) will be the family of those sets K G T such that x CK CCC. 

L e m m a 3.7 Let C C X be compact, H C X be closed and, for every n G Z + . 
Kn a closed set such that Kn+\ C Kn C Can, where an I 0. Then H meets all 
sets Kn if and only if it meets their intersection K. 

Proo f Of course, whenever H f) K / 0, we get H n Kn ^ 0 for all n G Z + . 
Conversely, for every n G Z + let xn G HnKn, and yn G C such that d(yn, xn) < 
an. Since C is compact, we can find a cluster point y G C for the sequence (Hn)n, 
which enjoys this property also with respect to (xn)n, because d(yn,xn) -» 0 as 
n -» +oo. Now it is easy to check that x € H HK. • 

Lemma 3.8 Let C C Y, x G C, and, for every n G Z+. C7n = C7x/n. 

(a) IfC is open, T(x;C) = UF(x\C). 

(b) If C is compact T(x]C) — n n r ( ; r ; C n ) . 

Proo f a) of course, the set IV = U T(x\ C) is contained in T(x; C). In order to 
prove that W = T(x; (7), it will be enough to prove that W is open and closed 
in T(x;C). To this end, let y G IV: then there exists K G F(x\C) such that 
y G W. Now, since C is open, T(x; C) is open in turn, and we can find V G U 
such that y G V CC T(x;C): now it is easy to check that K UV e T(x;C), 
so that V C W, and actually IV is open in T(x;C). Now, let (xn)n be a 
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sequence in W which converges to a point y E T(x; C). Let V € U be such that 
2l G V CC T(x;C), and take n G Z + such that xn G V: since xn G TV, there 
exists Kn G .F(x; C) such that xn G ifn. Hence y G Kn U V = Hn G .F(.r; C), 
so that y G TV, and we can conclude that W is closed as well. 

b) Let W be the right-hand side of the equality to be proved. Then, obvi­
ously, T(x; C) C TV. Now, for every n G Z + , let Kn be the closure of T(x; Cn), 
K" = nni\Tn. Then PV C i\T C n n C n = C. Now, let us prove that K is connected. 
To this end, let U and V be two open disjoint sets which both meet K. Then, 
for every n, these sets cannot cover the connected set Kn, so that Kn n H ^ 0, 
where H = I \ ( [ / U V r ) : now Lemma 3.7 ensures that K n H ^ 0. We just 
showed that, whenever two open, disjoint sets both meet the set K, they cannot 
cover it. Hence K is connected. But x G K C C, so that actually jK C r(.r; C), 
and even more so, TV C T(x; C). • 

Proposit ion 3.9 Let E : T =3 X be a measurable multifunction. Whenever 
teT,xe E(t) let us put T(t,x) = T(x]E(t)), otherwise T(t,x) = 0. Then the 
multifunction T : T x X =4 X is globally measurable whenever its values are of 
the following kind: 

(a) open; (b) compact. 

Proof a) Let us order T in a sequence (Ki)i. By virtue of Prop. 3.2e the set 
Si C T where Ki CC E(t) is measurable. Now, let x G X, A C X be open, 
J the set of those indexes i G Z + such that An Ki ^ 0: then it is enough to 
remark that T~X(A) = Uiej(Si x Ki), by virtue of Lemma 3.8a. 

b) Thanks to Theorem III.2 of [5] it is enough to show that T~X(U) G C®B 
whenever U is closed. For every n G Z+, t G T, a: G X let £„(*) = ^(r)1 /7 1 , 
Hn(t,x) be the closure of r (x ; En(t)). Now, thanks to the previous point and 
Prop. 3.1b, the multifunctions Hn are globally measurable, so that Theorem 
III.2 of [5] ensures that H~l(U) G C®B. On the other hand, from Lemma 3.8b 
we argue that T(t,x) = C\nHn(t,x), so that Lemma 3.7 entails that H~l(U) = 
-nH~l(U)eC®B. • 

Proposit ion 3.10 Let $,K : T ^XY be two measurable multifunctions which 
take respectively closed and compact values. Let us suppose that the values of 
K have non-empty interior and, for every t G T', define H(t) as the union of 
all the connected components of K(t) which meet $(t). Then the multifunction 
H is measurable 

Proof Let A C Y be open, A = {yf, i G Z + } be a countable, dense subset 
of Y. For every i G Z + let us put Ti(t) = T(yi',K(t)) and denote by Si the 
set of those t G T such that *(*) n Ti(t) ^ 0. Thanks to Prop. 3.9b, Tt is 
measurable, so that Prop. 3.2f ensures that Si G C. Now it is enough to notice 
that H~l(A) = Ui(Si n T7\A)). D 
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4 Interpolation among measurable multifunctions 

The aim of this section is to prove that the interpolation given by Theorem 2.10 
preserves measurability. To this end we recall Def. 2.3 and give the following 
one. 

Definition 4.1 Let Ct : V(T) 4 f b e a weighed operator on T, I G T. We 
say that a family of multifunctions ($i)iei from a set T into T is admissible 
for fi if, for every t G T, the family ($>i(t))iej is admissible. We say that ft is 
universally measurable if, for every I G T, A G A (I), and every admissible family 
($i)iei of measurable multifunctions from a measurable space (T, C) into T, the 
multifunction t H-> fi^/($(£); A$) turns out to be measurable. 

In order to prove that the operator ft we built in §2 is universally measurable 
we put forward some technical results. The first one concerns the family of paths 
V which was introduced before Def. 2.2. Throughout this section, the script Bn 

will stand for B(0; l / n ) ° . 

Lemma 4.2 There exists a countable family Q C V with the following property: 
for every n G V, £ > 0. there exists 7 G Q such that l(j) < l(n) + e and, for 
every r G [0,1]. d(^(r),n(r)) < e. 

Proof It is enough to take Q as the family of the poligonal paths 7 which 
enjoy the following property: there exists a finite subset A = { r o , r \ , . . . , r n } of 
[0,1] fl Q (where r0 = 0, r n = 1, r0 < n < ... < rn) such that 7(A) C Qp and 
7' is constant on the interior of each interval of the corresponding subdivision. 

• 

Lemma 4.3 Let E C Rp be closed, C, U C R p compact, a > 0. Q the family 
of the previous lemma. For every n G Z + let us put En = E + Bn. Then the 
three following conditions are equivalent: 

(a) Qa(C;E)nU^$; 

(b) for every n G Z + there exists a path j n G Q H V(En) such that 

(7(0) + Bn) n C # 0, (7(1) + Bn) fl U 7- 0, l(7) < a + 1/n; (4.1) 

(cj /or every n G Z + £/&ere erriste a pa£ft 7 n G V(En) such that (J^.l) holds. 

Proof (a) -=> (6). There exists a path n G V(E) such that 77(0) G C, n(l) G U, 
'(fl) £ a : then it is enough to apply Lemma 4.2 with e — 1/n, n G Z + . 

(b) -=> (c): obvious. 
(c) => (a). Let 7 n G V(En) be paths such that, for all n G Z + , conditions 

(4.1) hold. Since C and U are compact, it is right to suppose, up to a subse­
quence, that 7n(0) -> x and 7 n ( l ) -> y as n -+ +00, where x € C,y € U. So, let 
k G Z+ and apply Prop . 2.4 of [3] with E = Ek: then we find a path 7 G 7 9 ( ^ ) 
with length /(7) S a wich joins x and y. Hence, for all k G Z + , S(j) C E^, so 
that actually 5(7) C E, because E is closed, and (a) is fulfilled. Q 
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Proposit ion 4.4 Let C : T —» /C. E -> S be two measurable multifunctions 
such that, for every t eT, C(t) C E(t). Then, for every a > 0. the multifunction 
t H+ Ma(t) = Qa(C(t); E(t)) is measurable. 

Proof Let a > 0, U C Rp be compact. For every n G Z + let us put En(t) = 
E(t) + J3n. For every 7 6 P , let An(7) be the set of those t e T such that 
En(t) D 5(7) . Thanks to Prop. 3.2d, in which we put §(t) = En(t), $(t) = 
5(7), we get An(^) e C Since C is a measurable multifunction, the sets 
Tn(7) = A^j) n C~1(/y(0) + Bn) are measurable as well. Now it is enough 
to notice that, by virtue of the equivalence between (a) and (b) in Lemma 
4.3, M - ^ U ) = n n 5 n , where 5 n = U{Tn(7); 7 e Qa(U)} and Qa

n(U) is the 
countable family made up by those paths 7 G Q such that (7(1) + Bn) n U ^ 0, 
'(7) < a + 1/n. Then M~l(U) e C whenever U is compact. On the other hand, 
if U is open, we get M - 1 (U ) = U n M~ 1 (U n ) , where (Un)n is any sequence of 
compact sets whose union gives U. Hence, Ma is a measurable multifunction. 

• 

Lemma 4.5 Let E C Rp . a > 0. A be a dense subset O/Rp. For every n e Z + 

let us put En = E + Bn. Then the following conditions are equivalent: 

(a) p(E) < a. 

(b) there exists v e Z + such that, for all n > v and £ e A n En it is 
Qan(£;En) D r ( ^ ; E n ) , where an = a+ 1/n. 

(c) for every x e E it is Qa(x; E) D T(x; E). 

Proof (a) => (b). Since E e <S, we can find v e Z + such that, whenever n > v 
and K,H e H(E), it is (K + Bn) n (H + £ n ) = 0. Now, let n > ?/, ^ e A n £ n , 
z G Tn = r ( ^ ; E n ) . Then we can find x, y G E such that d(:r,£) < l /2n , 
d(y,z) < l / 2n . Since n > 1/, we get indeed y G T(x; JE), SO that, thanks to (a), 
we find a path n G V(E), with length /(n) < a, which joins x and H. Now it 
is easy to build a path 7 G V(En) which joins £ and z, whose length does not 
exceed an: to this end, it is enough to connect rj with the two segments £.r, yz. 
Then zeQa»(£;En). 

(b) =-> (c) Let x e E, y e T(x;E). For every n > v let us take # n G 
A n (x + B n ) , un G A n (t/ + Bn). Then there exists a path 7 n G P(F?n) such 
that Z(7n) < an , 7n(0) = ^n? 7n(l) = Vn- In particular, (4.1) holds, where we 
put C = {#}, U = {H}. Thanks to the implication (b) =-> (a) of Lemma 4.3, we 
get yeQa(x;E). 

(c) =-> (a) Let x e E, y e T(x; E): then y G Q a(^; -^), so that we can find a 
path 7 G /P(E') which joins x and H, whose length does not exceed a. Since x 
and 2/ are arbitrary, p(A) < a. • 

Proposit ion 4.6 Let E : T -+ S be a measurable multifunction, and put, for 
every t G T, /3(t) = p(E(t)). Then /3 is measurable. 
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Proo f For every n G Z+ let us put En(t) = E(t) -f Bn. Let us also define Tn 

as T in Prop. 3.9, with En in place of E. Thanks to that result and Prop. 4.4, 
for every £ G A = Q p , a > 0, the multifunctions ^(t) = Vn (£,£), * W = 
Qa(f;,En(t)) are measurable. Then Prop. 3.2d ensures that the set An(£) C T 
where Qa(£,En(t)) D Tn(t,£) is measurable. Now it is enough to point out 
that, thanks to Lemma 4.5, / 3 _ 1 (] — oo, a]) can be expressed as \JV fl {-An(£); n > 

Theorem 4.7 T/ie mean operator fi : D(<S) -> <S given by Theorem 2.10 is 
universally measurable. 

Proo f We proceed by induction on the number n = |I | , as in the proof of Theo­
rem 2.10. If n = 1, an admissible family of multifunctions is nothing but a single 
multifunction $, while A(I) = {1}: then the mapping t H-T fi($(£),l) = $(t) 
is obviously measurable. Now, let us suppose n > 1, take an admissible family 
of multifunctions ($i)iei and put, for shortness, \l/(£, A) = fiie/($i(£); A*). Let 
J5(t) = u i € /*iOO, A G A(I), A* = miniej A*. If 2nA* > 1, we get ^ ( r , A) = E(t). 
Then, in this case, the mapping \£(-, A) is surely mesurable, thanks to Prop. 3.2a. 
Otherwise, let us put K(t) — Uiej$i(t) and C(t) — Qiej(^i(t)^i), where J 
is the set of those indexes i G I such that A* > A*, while the coefficients fa 
are built as in the proof of Theorem 2.10. Since \J\ < n, and we argue by 
induction, it is right to suppose that C(-) is measurable. Then we put, for ev­
ery a > 0, Z(t,a) = Qa(C(t)]E(t)). Thanks to Prop. 4.4, the multifunction 
t H-> Z(t,a) is mesurable. Furthermore, if in (2.3) we put C — D = K(t), 
E = E(t), and remember that h\c(E)xC(E) < ^E> w e get the following Lips-
chitz property with respect to the Hausdorff distance: for all t G T, a, 6 > 0, 
h(Z(t,a), Z(t,b)) < \a — b\. In particular, the multifunction a i-> Z(t,a) is con­
tinuous. Since F = R p is separable, Prop . 3.3 ensures that Z is measurable 
with respect to the product of C with the Borel rr-field on [0,+oo[. On the 
other hand, fii€/($i(£), A») = Z(£, a(£)), where the function a(£) = 2n\*p(E(t)) 
is measurable, thanks to Prop. 4.6. Hence Remark 3.4 entails that *(-,A) is 
measurable also in the case 2nA* < 1, and the proof is complete. • 

Propos i t ion 4.8 Let I be a finite set of indices and, according to Def. J^.l, 
(Ti)i<zj an admissible family of measurable multifunctions from T to R p . Let 
A = (\i)iei be a measurable function from T to A(I) and put, for every t G T, 
$(t) = Qi£j(Ti(t);\i(t)). Then the multifunction $ :T =$11? is measurable. 

Proof For every t G T, A G A(I) let us put #(*,A) = fi^IC1^); A*). Thanks 
to Theorem 4.7 and property (fi3) in Def. 2.4, the multifunction $ : T x A(I) =3 
R p is measurable with respect to t and continuous with respect to A, so that 
Prop. 3.3 entails that it is globally measurable. Since $(£) = $(£, A(£)), from 
Remark 3.4 we easily argue that <£ is measurable. • 
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5 Approximation from the Exterior of Caratheodory 
Multifunctions. 

We recall Def. 2.10 and some properties which are related to lower and upper 
semicontinuity. Let X, Y be metric spaces, $ : X =3 Y a multifunction. An 
easy consequence of the given definition is that $ is upper semicontinuous if 
and only if, whenever A C Y is open, the set of those points x £ X such that 
$(x) C A is open. On the other hand, a necessary condition for the lower 
semicontinuity of $ (which becomes also sufficient if $ takes compact values) 
is the following one: for every compact subset of X and every a > 0 the set of 
those points x G X such that <&(x)a D K is open (see, for instance, Prop . 2.1 
of [8]). From these arguments we easily infer that, whenever its values are 
compact (and non-empty), $ is continuous if and only if it is continuous as 
a mapping from X into the family of all compact, non-empty subset of Y, in 
which we consider the Hausdorff distance of Def. 2.1: in other words, if and 
only if /i($(£), <£(#)) —> 0 whenever ( 4 x . According to this setting, we say 
that $ is lipschitzian if there exists a positive constant L such that, for every 
£,x G X it is h($(£),$(a;)) < Lp(£,x), where p is the distance on X. Then 
we say that F is locally lipschitzian if, for every point x G X, there exist a 
neighbourhood U of x and a positive constant L such that, for every £,# G U 

itish($(Z),*(x))<Lp(Z,x)-
Now, let (T, C) be a measurable space, B the Borel a-field on X. From now 

on, whenever we consider a set E G C ® B, we agree to identify it with the 
multifunction E : T z$ X whose graph is E. According to this convention, for 
every t G T we denote by E(t) the set of those points x G X such that (t, x) G E, 
while, for every x G K, the script E~l(x) will stand for the set of those elements 
t eT such that (t, x) G E. If £7 G C®B, we say that a multifunction F : E = t 7 
is respectively lower or upper semicontinuous, continuous or locally lipschitzian 
with respect to x according to whether, for every i G i ' , the multifunction F(t, •) 
enjoys the corresponding property on the set E(t). Now we are going to present 
some alternative assumptions for our main result, which will be stated below. 

(i) F(t,x) is upper semicontinuous with respect to x, and takes connected 
values. 

(ii) F(t,x) is continuous with respect to x, and the sets E(t) are open. 

(iii) F(t,x) is continuous with respect to x, X is locally compact and the sets 
E(t) are closed and locally connected. 

Theorem 5.1 Let (T,C) be a complete, measurable space, (X,p) a complete 
separable metric space, EeC®B,F:E=$ R P a globally measurable multi­
function which takes compact, non-empty values. Let us suppose that (i), (ii) 
or (iii) holds. Then there exist globally measurable multifunctions Fn : E =3 R p 

(n = 1,2,.. .) which take compact values, are locally lipschitzean with respect to 
x and enjoy the following properties, for every pair (t,x) G E: 

F(t,x) C Fn+1(t,x) C Fn(t,x), n G Z+, 

h(Fn(t,x),F(t,x)) -» 0 as n -> +oo . 
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Furthermore, in the case (i), the values of Fn are also connected. 

The main tool for proving Theorem 5.1 will be Prop . 5.5, which can be seen 
as a parametrized version of Lemma 4.1 of [4], at least as far as condition (i) 
is concerned. We put forward some technical results about refinements and 
partitions of unity, because we need to build them in such a way to preserve 
measurability. 

Lemma 5.2 For every i £ Z + let A\ : T =3 X be a measurable multifunction 
with open values. Then there exist measurable multifunctions Ci : T =S X such 
that the family (Ci(t))i is a locally finite refinement of the previous one, that 
is to say: for every t £ T, x £ X there exists a neighbourhood U of x which 
meets at most a finite number of sets Ci(t), and for every i £ Z + . t £ T, it is 
Ci(t) C Ai(t). Furthermore, for every t £ T, UiCi(t) = UiAi(t). 

Proof Let Gi i 0, t £ T. We are going to define by induction the sequence 
(Ci(t))i by putting Cx(t) = Ax(t) and d(t) = At(t) \ ( U j ^ C f c W W Thanks 
to Propositions 3.2a,c and 3.Id, it is easy to prove by induction that the mul­
tifunctions Ci are measurable. Furthermore, for every t £ T, the sets Ci(t) are 
obviously open, and cover the same set as the given ones: as regards the last 
statement, it is enough to remark that Ci(t) D Ai(t) \ (U^~\Afc(r)). In order 
to prove that the family (d(t))i is locally finite, we consider the sets Vij(t) = 
(u|==1Cfc(^))(Ti5 i,j £ Z + , and take x £ X: then we can find i £ Z + , j > i 
such that x £ d(t) and B(X;2GJ) C d(t), so that B(X;GJ) C Vij(t) C Vjj(t). 
Since Vjj(t) C Vhh(t) for every h > j , and Vhh H Ch+\(t) = 0, we actually get 
B(x; G/) fl Ch(t) = 0 Wal l h > j . • 

Remark 5.3 It is easy to prove that, whenever (Ci)i is a locally finite sequence 
of open subsets of X and pi I 0, the family (Cf')i is again locally finite. 

Remark 5.4 Let (T,C) be a complete measurable space, and consider a se­
quence (Di)i of measurable multifunctions from T to X which take open val­
ues. Let us suppose that, for every t £ T, the family V(t) = (Di(t))i is locally 
finite, and denote by D(t) its union. Then, for every t £ T, we can associate to 
V(t) a partition of unity is such a way to preserve measurability with respect 
to t. More precisely, if A is the graph of D(-), for every i £ Z + we can define 
a globally measurable function A* : A —> [0,1] which is locally lipschitzian with 
respect to x, and vanishes outside the graph of Di, in such a way that, for every 
(t, x) £ A it is £ ] • ^i(£? x) = 1, where in the previous sum all but a finite number 
of terms are zero. To this end, it is enough to put Â  = Hi/ji, where iii(t,x) 
is the distance of x from X \ Di(t), while u. = ]T\ ^ > 0 on A. Indeed, it is 
known that the functions Aj are locally lipschitzian with respect to x (see, for 
instance, Theorem 0.2 of [2]). On the other hand, for every i £ Z + , r > 0, it 
is Hi(t,x) > r if and only if (t, x) lies in the graph I\r of the multifunction 
t i-> Di(t)r, which is measurable thanks to Prop . 3.Id. Since C is complete, 
Theorem 111.30 of [5] ensures that J\r £ C 0 B. Hence the functions /Lj are 
globally measurable, so that the functions Â  enjoy the same property. 



32 Carlo BENASSI, Andrea GAVIOLI 

Proposit ion 5.5 Let E G C x B, F,H : E =3 Rp be two globally measurable 
multifunctions which take respectively compact and closed values. Let us suppose 
that (i), (ii) or (Hi) holds, that H is lower semicontinuous with respect to x and, 
for every (t,x) G E, G(t,x) C H(t,x). Let r > 0 be given. Then there exists 
a globally measurable multifunction $ : E =3 R p which takes compact values, 
is locally lipschitzian with respect to x and fulfils the following inclusions, for 
every (t,x) G E: 

F(t, x) C $(t, x) C H(t, x) + rB, (5.1) 

$(t, x) C F(t, B(x; r) n E(t)) 4- rB. (5.2) 

In the case (i), the values of $ are also connected. 

Proo f For the sake of shortness, we shall denote by (E,£) the measurable 
space in which £ is the restriction to E of C eg) B. Let r > 0 be given, a = r/2: 
for every (t, x) G E, let Fa(t, x) be the set F(t, x) + aB°, and denote by Fa(t, x) 
its closure. Let V(t,x) be the set of those points £ G E(t) such that 

F(t, 0 C Fa (t, x) CFa(t,x)C H(t, 0 + rB (5.3) 

and, for every U C K, M(U) the set of those pairs (t, x) G E such that Uf\E(t) C 
V(£, x) . We claim that M(U) G £(£)/?. To this end, let us denote by M+ (U ) and 
M~(U) the subsets of E where, respectively, the first and the third inclusion 
in (5.3) holds for every £ G W(t) = U D E(t). According to Prop . 3.5, let 
us consider the two measurable multifunctions F + = F-J-, H~ = H^. Let us 
replace in Prop . 3.2d the measure space (T, C) with (E, £), Y with X, and apply 
it to the multifunctions $(t, x) = Fa(t,x) and $(t,x) = F+(t): then we argue 
that M+(U) G C x .6. In a similar way, we can apply the same lemma to the 
multifunctions ®(t,x) = Fa(t,x) and $(t,x) = H~(t) and infer that M~(U) G 
C x B as well: now it is enough to remark that M(U) = M+(U) n M~~(U). 

Now, let us consider a countable, dense subset A of X, and order A x Z + 

in a sequence (xi,ki), i G Z + . Then, for every i G Z + , let 0 < pi < a /Ski, 
Vi = B(xi,pi)°, Ui = B(xi,3pi)°. For every i G Z + , let us put T{ = 7r(E;), where 
Ej = (T x Vi) nM(U i) and 7r is the projection (£, x) i-» t. Since E* G £ x B and £ 
is complete, Theorem 111.23 of [5] ensures that Ti G C. Now, let Ai : T =4 K be 
the multifunction which agrees with V̂  on Si = Ti \Tj_i (where we put T0 = 0). 
Of course, Ai : T =4 X is measurable and takes open values. Furthermore, 
for every t G T, the family (Aj(£))* covers JE(£). Indeed, let x G J5(£): since 
x G V(£,a?) and the arguments at the beginning of this section show that V(t,x) 
is open in E(t), there exists i G Z + such that x G Vi and Uj 0 E(t) C ^ ( ^ x ) . 
If i is the first of such indeces we get t G Si, so that Aj(£) = Vi, and actually 
x G i4<(t). 

Now we can apply Lemma 5.2, and build new multifunctions Ci as there. 
Then we put D{(t) = Ci(tyj, Et(t) = D{(t) n E(t). We recall that d(t) C 
Ai(t) C Vi, so that Di(t) C TAPi C Ui. Furthermore, thanks to Remark 5.3, the 
family (Di(t))i is locally finite. Now, let us build the functions A* as in Remark 
5.4 and, for every i G Z + , (t,x) G E, let us define I(t,x) and J(£,x) as the sets 
of those indeces i G Z + such that, respectively, x e Di(t), x e Ci(t). Now, for 
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every i £ I, let us regard £$ as the graph of a multifunction Zi : T% =4 X with 
non-empty values. Thanks to Theorem 111.22 of [5], Zi admits a measurable 
selection Xi : Ti -> X . Then we put, for every t £ Si, Ki(t) = Fa(t,Xi(t)) and 
point out that the following inclusions holds, whenever t £ Si, £ £ Ei(t): 

F(t,OCKi(t)CH(t,0+rB. (5.4) 

Indeed, by construction, (t,Xi(t)) £ E<, so that (5.3) holds with x = Xi(t) and 
£ £ Ui'. since £;(£) C Ui, even more so it holds on Ei(t), and (5.4) follows at 
once. Now, if (i) holds let us put Hi(t,x) = Ki(t). Otherwise, let us denote by 
Ti(t, x) the set T(x; Ei(t)) or the set T(x; Ei(t)) according to whether (ii) or (iii) 
holds, where Ei(t) is the intersection between E(t) and the closure of d(t)pi^2. 
Then, in the cases (ii) and (iii), we define Hi(t,x) as the union of all the con­
nected component of Ki(t) which contain the set ^i(t, x) = Fa(t, Ti(t, x)). Now 
it is easy to check that, whatever condition holds among (i), (ii), and (iii), 

F(t,Z)<Hi(t,OCH(t,£) + rB, (5.5) 

Hi(t, 0 C F(t, H(£; r) n E(t)) + rB, (5.6) 

where the script ^ is explained in Def. 2.5. Indeed, in the case (i) the set 
Hi(t,£) = Ki(t) is connected, so that to the first relation in (5.5) is equivalent 
to an inclusion, namely the first inclusion in (5.4). On the other hand, when (ii) 
or (iii) holds, it is ^i(t,£) -< Hi(t,£) by construction. But Ti(t,£) is a connected 
set which contains £, so that Prop 2.13, in which we put $ = Fa(t, •), U = {£}, 
V = Ti(t,t), entails that F(t,£) ^ #»(*,0- Now, the first relation of (5.5) 
follows from Prop. 2.5. The second inclusion in (5.5) follows obviously from the 
second inclusion in (5.4), since Hi(t,£) C J^(£). As regards (5.6), it is enough 
to remark that, by construction, Hi(t,£) C F(t,Ei(t)) -f rB, where Ei(t) C Ui, 
and the diameter of Ui does not exceed 2a = r. We also point out that, by 
virtue of Prop. 2.11, for every (t,x) £ E, i £ I(t,x), it is Ki(t) £ A in the case 
(i), while Ki(t) £ S if (ii) or (iii) holds. In any case, Hi(t,x) £ S. Now, thanks 
to Remark 2.9, it is easy to chek that, for every (t, x) £ E, the wheighed family 

*(*,*) - {(Hi(t,x),\i(t,x)); i £ /(*,*)}, (5.7) 

is admissible. Now we are going to show that, for every (t, x) £ E, there exists 
a neighbourhood U of x such that, for every £ £ U fl E(t), 

^iei(w(Hi^OAi(t^)) - nieI{t,x)(Hi(t,x),\i(t,0). (5-8) 

To this end, we proceed in three different ways, according to whether (i), (ii) or 
(iii) is satisfied. 

(i) We first remark that, whenever J(t,x) C J C I(t,x), the family ^j(t,x) 
which turns out from (5.7) when J replaces I(t,x) is again admissible, and such 
that n$j(t,x) = Q$(t,x). Now, let V C C\{Di(t); i £ I(t,x)} be an open 
neighbourhood of x which meets at most a finite number of sets Di(t), and let 
us withdraw from V all sets Cj(t) which meet it but do not contain x. Since 
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the number of these closed sets is finite, the set U which is left is again an open 
neighbourhood of x, and for every £ G U it is J(t,£) C J(t,x), I(t,x) C /(£,£). 
Now (5.8) follows easily, since in this case the sets Hi(t,x) actually do not 
depend on x. 

(ii) Let us call now W the neighbourhood U of x which was build in the 
previous case, and denote by U the connected component of W n E(t) which 
contains x, so that, for every £ G U, i G I(£, £), it is n(£ ,£) = r^(£,x). Then, of 
course, #*(£,£) = Hi(t,x), and (5.8) holds for every £ G U = U n £(£). 

(iii) Let us build W as U was built in the case (i), but replacing Di(t) with 
Di(t) = Ci(^)^/2. Now, let V be a neighbourhood of x such that V n E(t) is 
connected, TV the connected component of W which contains x, U = V n W. 
Then U n E(t) is connected, and contained in all sets Ei(t) (i G I(t,x)). Then, 
for every £ G U n F7(£), we get again Ti(t,£) = F ^ ^ x ) , so that (5.8) holds. 

Now we are going to show that the multifunction $(t,x) = ft ty(t,x) fulfils 
the required properties. In order to prove that $ is globally measurable, we 
first claim that the multifunctions Hi are globally measurable. Indeed, thanks 
to Remark 3.4 and Prop. 3.1c,d, for every i G Z + K\ is measurable, so that, 
in the case (i), the assertion follows at once. If (ii) or (iii) holds, we point out 
that T̂  is measurable, thanks to Prop. 3.9: in particular, as regards the case 
(iii), it is right to suppose that, for every t G T, Ei(t) is compact, since it is 
a closed subset of U%, and U% can be chosen in such a way that Ui is compact. 
Hence Prop. 3.6 ensures that ^i is measurable, and from Prop. 3.10 we argue 
that Hi is measurable as well. Now, for every i G Z + , let Mi be the set of those 
pairs (t,x) G E such that x G Di(t). From Prop. 3.2e, in which we consider the 
measure space (E,£) and put $(t,x) — Di(t), ^(t,x) = {x}, we get Mi G £. 
Then, whenever I is a finite subset of Z + , the set M(I) of those pairs (t, x) G E 
such that I(t,x) = J is measurable as well, since M(I) = r\ieiMi\Uj^.jMj. On 
the other hand, if we apply Prop. 4.6, where we put the measure space (E, £) 
in place of (T,C), we infer that $ is measurable on M(I). Now it is enough 
to point out that E = U{M(7); I G T}, where T is the countable family of all 
finite subsets of Z + . 

In order to prove that $ is locally lipschitzian with respect to x, we can 
exploit property (5.8), and proceed exactly in the same way as in Lemma 4.1 
of [4]. We refer to that paper for the details. Now we only need to prove (5.1) 
and (5.2): to this end, it is enough to consider (5.5) and (5.6), which hold for 
every i G /(£,£), and combine them with the following inclusions, which follow 
from property (O4) of Def. 2.3: 

nieI{tiX)Hi(t,x) C $(t,x) C \Jiei(t,x)Hi(t,x). • 

Proof of Theorem 5.1. As Lemma 4.1 in [4], the previous result allows to 
build the approximating multifunctions, through an inductive procedure which 
starts from the case in which H(t,x) = R p . Now the Proof of Theorem 5.1 
follows, step by step, the one we gave in [4]. 
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R e m a r k 5.6 When F(t,x) is subject to a given domination from the exterior, 

of the kind F(t,x) C K(t), it can be useful to show that the approximating 

multifunctions preserve it. We point out that our technique allows us to do that, 

as soon as K(-) is measurable and takes closed values: to this end, it is enough 

to begin the inductive procedure of the previous proof with H(t,x) = K(t). 
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