Previous |  Up |  Next

Article

References:
[1] Anderson F., Feil T.: Lattice-Ordered Groups (An introduction). Reidel, Dordrecht-Boston-Lancaster-Tokyo, 1988. MR 0937703 | Zbl 0636.06008
[2] Droste M.: k-homogenous relations and tournaments. Quart. J. Math. Oxford 40, 2 (1989), 1-11. MR 0985534
[3] Fried E.: Tournaments and non-associative lattices. Ann. Univ. Sci. Budapest, Sect. Math. 13 (1970), 151-164. MR 0321837
[4] Fried E.: A generalization of ordered algebraic systems. Acta Sci. Math. (Szeged) 31 (1970), 233-244. MR 0272694 | Zbl 0226.06005
[5] Glass A. M. W., Holland Charles W.: Lattice-Ordered Groups (Advances and Techniques). Kluwer Acad. Publ., Dordrecht-Boston-London, 1989. MR 1036072
[6] Kopytov V. M., Medvedev N. Ya.: The Theory of Lattice Ordered Groups. Kluwer Acad. Publ., Dordrecht, 1994. MR 1369091 | Zbl 0834.06015
[7] Rachůnek J.: Semi-ordered groups. Acta Univ. Palacki. Olomuc., Fac. rer. nat.61 (1979), 5-20. MR 0589842
[8] Rachůnek J.: Solid subgroups of weakly associative lattice groups. Acta Univ. Palacki. Olomuc., Fac. rer. nat. 105, Math. 31 (1992), 13-24. MR 1212601
[9] Rachůnek J.: Circular totally semi-ordered groups. Acta Univ. Palacki. Olomuc., Fac. rer. nat. 114, Math. 33 (1994), 109-116. MR 1385751
[10] Rachůnek J.: The semigroup of varieties of weakly associative lattice groups. Acta Univ. Palacki. Olomuc., Fac. rer. nat. 34 (1995), 151-154. MR 1447263
[11] Rachůnek J.: On some varieties of weakly associative lattice groups. Czechoslovak Math. J. 46 (1996), 231-240. MR 1388612
[12] Skala H.: Trellis theory. Alg. Univ. 1 (1971), 218-233. MR 0302523 | Zbl 0242.06003
[13] Skala H.: Trellis Theory. Memoirs Amer. Math. Soc., Providence, 1972. MR 0325474 | Zbl 0242.06004
Partner of
EuDML logo