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Abstract 
A semi-ordered group is a group endowed with a reflexive and anti­

symmetric binary relation compatible with the group addition. Circular 
totally semi-ordered groups (circular £o-groups) are very close to linearly 
ordered groups. In the paper it is proved that the class of all subdirect 
sums of circular to-groups is a variety of weakly associative lattice groups 
(•wal-groups). Further, an atom in the lattice of varieties of wal-groups is 
described. 
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A weakly associative lattice (wa-lattice) is an algebra A = (A, V, A) with two 
binary operations satisfying the identities 

(I) x\i x = x ; x Ax = x\ 
(C) xVy^yVx; xAy = yAx; 
(Abs) x V (x A y) = x ; x A (x V y) = x ; 
(WA) ((x A z) V (y A z)) V z = z ; ((x V z) A (y V z)) A z = z . 

The zDa-lattices have been introduced by E. Fried in [3] and [4], and by 
H. L. Skala in [12] and [13]. It is obvious that the notion of a uja-lattice gener­
alizes that of a lattice because the identities of associativity of the operations V 
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and A are special cases of the identities (WA) of weak associativity. Neverthe­
less, similarly as for lattices, the properties of V and A make possible to define 
also for u;a-lattices a binary relation < on A as follows: 

\/x,y £ A; x <y <==># xAy = x. 

The relation < is reflexive and antisymmetric (i.e. < is so-called semi-order) 
and each subset {a, b} C A has the join sup{a, 6} = aVb and the meet inf{a, 6} = 
a A b in A It holds that (A, V. A) is a iva-lattice. Therefore we can equivalently 
view any u;a-lattice as a set with a binary relation <. From this point of view, 
tournaments are special cases of u;a-lattices. 

Recall that a tournament is a set T ^ 0 with a reflexive and antisymmetric 
binary relation < satisfying 

Vx,y £ T; x < y or u < x . 

If (G, + ,0 , — (•)) is a group and (G,V,A) is a u;a-lattice then the system 
G = (G, + , 0, — (•), V, A) is called a weakly associative lattice group (wal-group) 
if G satisfies the following mutually equivalent identities and quasi-identity: 

(Dv) x + (y V z) + v = (x + y + v) V (x + z + v), 
(DA) x + (y A z) + v = (x + y + v) A (x + z + v), 
(M) y < z = > x + y+ u < x + z + u . 

(See [7] and [8]. In [13] a u;a/-group is called a trellis-group.) If G is a 
^va/-group then G + = {x 6 G; 0 < x} is called the positive cone of G and its 
elements are positive. 

In contrast to lattice ordered groups (/-groups) that are torsion free, there 
are many finite iva/-groups. 

It is obvious that the class Gwai of all iva/-groups is a variety of algebras of 
type (+, 0, — (•), V, A) of signature (2,0,1,2,2). Some properties of the variety 
Gwai and the lattice of subvarieties of Gwai have been investigated in [11] and 

[10]-
If for a u;a/-group G the iva-lattice (G, <) is a tournament, then G is called 

a totally semiordered group (a to-group). A tournament (T, <) is said to be 
circular (see e.g. [2]) if 

(a) there exist a,b,c£T such that a < b < c < a , 
(b) whenever x,y,z G T satisfy x < y < z < x then there exists no w E T 

such that w < {x, y, z} or w > {x, y, z}. 

A tO-group G is called circular if the tournament (G, <) is circular. The 
circular tO-groups have been introduced and studied in [9]. 

In this paper we will deal with circular iO~groups and linearly ordered groups 
(O-groups) (and classes of iva/-groups obtained from them) and discuss a ques­
tion concerning atoms in the lattice of varieties of tva/-groups. 

For necessary results concerning /-groups and O-groups see e.g. [1], [5], [6], 
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Definition A 2 O-group G is called an almost o-group (an ao-group) if G is 
either an O-group or a circular tO-group. 

Proposit ion 1 Let G be a to-group. Then G is an ao-group if and only if G+ 

is a linearly ordered set. 

Proof a) Let G be a circular rO-group, a,b,c£ G + \ { 0 } , a < b < c, but a > c 
Then a < b < c < a and 0 < {a,6,c}, a contradiction. Hence a < c, therefore 
the restriction of < on G + is transitive. 

b) Let G + be linearly ordered set and let G not be a linearly ordered group. 
Then there exist a,b,c,d £ G such that a < b < c < a and, for example, 
d < {a,6,c}. Hence —d + a < — d + b < —d + c < —c/ + a, and 0 < { —J + a, —O! + 
6, —rf + c}. Thus G + is not a linearly ordered set, a contradiction. Similarly for 
d> {a.b^c}. • 

Now we will recall some notions and results concerning wal-groups and their 
subgroups. Subalgebras of iva/-groups are called wal-subgroups. That means 
if G is a ^va/-group and 0 ^ H C G then H is a ^va/-subgroup of G if H is 
both subgroup and ^l;a-sublattice of G. A normal convex ^Dal-subgroup H of 
a wal-group G is called a wal-ideal of G if it satisfies the following mutually 
equivalent conditions: 

(a) Va, b G H, x, y G G; (a; < a, y < 6 =» 3c G H; x\/ y < c); 
(b) Va, 6, c G FT, a?, y G G; a? < a, t/ < 6 => (x V ty) V c G H. 

By [7] and [8], the wa/-ideals of wa/-groups coincide with the kernels of 
homomorphisms of waZ-groups. 

If H is a wal-ideal of G, we can define the structure of a wa-lattice on G/H 
by 

x + H <y + H <=>df 3a G H; x + a<y, 

and with this relation G/H is a wal-group. 
A wal-ideal H of G is called straightening if it satisfies the following mutually 

equivalent conditions (see [8]): 

(a) x,yeG} 0 <xAy EH ==> x £ II or y £ H, 
(b) a?, y G G, a? A y = 0 =J> x £ H or y £ H, 
(c) G/H is a iO-group. 

A iDaZ-group G is called representable if it is isomorphic to a subdirect sum 
of io-groups. It is obvious (see also [8]) that a tvaZ-group is representable if and 
only if the intersection of all its straightening wal~ideals is equal to {0}. Let us 
denote by 7Zwai the class of all representable wal-groups. By [11], Proposition 7, 
!Zwai is a variety of iDa/-groups. 

Now we will deal with a class of representable wal-groups which is close to 
the class IZi of representable /-groups. 

Definition A iva/-ideal H of a wal-group G is called an ao-straightening wal-
ideal of G if G /H is an aO-group. 

(Obviously, every a ̂ straightening wa/~ideal is also straightening.) 
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Defini t ion A uja/-group G is called ao-representable if it is isomorphic to a 
subdirect sum of aO~groups. 

Let us denote by IZAo the class of all aO-representable iva/~groups and VAo 
the variety of ^va/-groups generated by all aO-groups. We have: 

L e m m a 2 IfG is a wal-group, then G € IZAo if and only if the intersection of 
all its ao-straightening waUideals is equal to {0}. 

T h e o r e m 3 The class IZAo is a variety of wal-groups. 

Proo f We will use Birkhoff's characterization of varieties as classes of algebras 
of a given type closed with respect to products, subalgebras and homomorphic 
images. Let us put U = TZAo. 

a) It is obvious that the product (the cardinal sum) of ^va/-groups from U 
belongs also to U. 

b) Let G G U be a subdirect sum of aO-groups G% (i G I) and H be a 
w;a/-subgroup of G. Let us consider any aO-straightening iva/-ideal Sj of G and 
denote Hj = H D Sj. By [11], proof of Proposition 7, Hj is a straightening 
^va/-ideal of H. 

Let (Sj] j G J) be the system of all aO-straightening wal-ide&h of G. Then 

f)Hj = f)(Hnsj)cp\sj = {o}, 
jeJ jeJ j€J 

hence by Lemma 2, H £ U. 
c) Let / be a waZ-homomorphism of a iva/-group G onto a ?Da/-group G'. 

For any ^Da/-ideal H of G put Hf = f(H). If H is a straightening iva/-ideal of G 
then, by [11], proof of Proposition 7, Hf is a straightening uja/-ideal of G'. Let 
now H be an aO-straightening wal-ideel of G. Let us consider a '+H ' , &'+H', c'+ 
Hf G (G ' /H ' ) * such that a' + Hf < bf + H', 6' + Hf < c' + Hf. Let a,b,c£G 
be such that a' = / ( a ) , 6' = / (6) ,c ' = / (c) , and a + H, 6 + H, c + H G (G/H )+ . 
Since G/H is a rO-group, a + H and b + H are comparable. I f a + H>6 + H 
then a' + H' > bf + H', hence a' + H' = 6' + H', and thus a' + Hf < cf + Hf. 
Similarly for b + H > c + H. Therefore we can suppose that a + H < b + H 
and 6 + H < c + H. Since G/H is an aO-group, we have, by Proposition 1, 
a~\- H < c + H, and hence also a' + H' < c' + H'. Therefore, by Proposition 1, 
H' is an aO-straightening iva/-ideal of G'. 

Let now G € U and let (H;; i £ 7) be the system of all aO-straightening 
iva/-ideals of G. If there exists j G I such that Hj = / (H j ) = {0'}, then 
{0'} is an aO-straightening iva/-ideal of G', and thus G' is an aO-group. Let 
H- = /(Hj) 7- {0'} for each i £ I. Because / induces a bijection (which respects 
set inclusions) between the set of wa/-ideals of G which are not contained in 
/Cer / and the set of all iva/-ideals of G', and because the wa-lattices G/H; 
and Gf jH[ are isomorphic, / also induces a bijection between the set of aO-
straightening ^va/-ideals of G and the set of aO-straighteninig iva/-ideals of G'. 

If H' = Oiqj H- ^ {0'}, then H = f~~1(Hf) is a ^va/-ideal which is contained 
in all aO-straightening waZ-ideals of G, hence H = {0}, a contradiction. Thus 
H1 = {0'}, and therefore by Lemma 2, G' is an aO-group. • 



A weakly associative generalization of the variety . . . I l l 

Corollary 4 The class IZAo and the variety VAo coincide. 

Let us consider the following identities: 

fA + ) / ( * V 0 ) V ( ( t / V 0 ) V ( z V 0 ) ) = ( ( z V 0 ) V ( H V 0 ) ) V ( * V 0 ) , 
1 ; \ (x V 0) A ((y V 0) A (z V 0)) = ((x V 0) A (y V 0)) A (z V 0). 

It is obvious that any G G %Ao satisfies both identities (A+) because G+ is 
a lattice. 

At the same time, for any iO-group G which is not an aO-group, the tourna­
ment G + is not a linearly ordered set, hence such G does not satisfy (A + ) . 

Let us consider the variety Hi of all representable /-groups, i.e. the variety 
of /-groups generated by all linearly ordered groups. By the preceding we have: 

Theorem 5 lli C HAo C Hwa\ . 

Let us denote by WAL the class of all varieties of wa/-groups (considered in 
the language C = (+ ,0 , — (•), V, A)). It is clear that WAL ordered by inclusion 
is a complete lattice. By [11], Theorem 5, it holds that the lattice WAL is 
distributive and contains the lattice L of all varieties of /-groups (considered also 
in the language C) as a complete A-sublattice. Furthemore, in [11], pp. 238-239, 
it is shown that the variety Ah of all abelian /-groups is an atom of WAL , but 
it is not the least non-trivial variety of WAL (in contrast to the lattice L) . 

Now we will describe another atom of the lattice WAL. Let us consider the 
group Z3 = {0,1, 2} with the addition mod 3. If we put Z^ = {0,1} then Z3 is 
the positive cone of the total semi-order on Z3 such that 0 < 1, 1 < 2, 2 < 0. Z3 
is then an ao-group. Let us denote V3 = Vwai(Z<3) (i.e. the variety of ^va/-groups 
generated by Z3) and % the variety of wa/-groups satisfying the identity 

(T3) 3z = 0. 

Obviously V3 C 1ZAo. 

Theorem 6 V3 is an atom of the lattice WAL. 

Proof Let {0} ^ G G V3. Since G ^ {0}, there exists 0 < a G G. Obviously 
V3 C 73, thus 3a = 0. Hence we have 0 < a, a < 2a, 2a < 0, that means 
the subgroup [a] = grp(a) is a ivaZ-subgroup of G which is (as a wal-group) 
isomorphic to Z3. Thus Z3 G Vwai(G), and therefore Vwai(G) = V3. D 

Now, let us consider the group Z5 = {0,1,2,3,4} with the addition mod 
5 and put 7L\ = {0,1,2}. Then Z5 is an aogroup. Moreover, Zg" is, up to 
isomorphism, the unique positive cone of a iva-lattice semi-order of the group 
Z5. 

Let us denote V5 = VWai(^) and consider {0} ^- G G V5. (It holds again 
that V5 C HAo.) Let us choose any 0 < a G G. Then we have also a < 2a, 
2a < 3a, 3a < 4a, 4a < 0. If 0 < 2a then [a] = grp(a) is a zO-subgroup of G and 
the rogroups [a] and Z5 are isomorphic. 
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Let 0 > 2a, Then again [a] is a ZO-group with the positive cone {0, 3a, a} of 
G which is isomorphic to Z5. 

The preceding considerations imply: 

T h e o r e m 7 If GE V5 and G is a to-group then Vwai(G) = V5. 

Q u e s t i o n It remains as an open problem: Is V5 an atom of WAL? 

N o t e Similarly as the. varieties V3 and V5 have been introduced, one can also 
define the varieties Vn for arbitrary n > 3 odd. Then one can also asks, more 
generally, the question, whether Vp is an atom of WAL for any p prime. But 
note that for p > 5 the situation becomes more complicated. For instance, for 
p = 7, there are tva-lattice semi-orders on Z7 such that the corresponding wal-
groups are not mutually isomorphic. For example, for Z * = {0,1,2,3} we get 
an aO-group which generates V7, for Z7 = {0,1,2,4} we get a 2O-group which 
is not an aO-group (1 < 2 < 4 < 1 and 0 < {1,2,4}), and for Z? = {0,1,5} we 
get a iva/-group which is not a tO-group. 
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