Previous |  Up |  Next

Article

References:
[1] Hamedani G.G., Mehri B.: Periodic boundary value problem for certain non-linear second order differential equation. Stud. Sci. Math. Hung. 9 (1974), 307-312. MR 0409952
[2] Haraux A.: Anti-periodic solutions of some nonlinear evolution equations. Manuscripta Math. 63 (1989), 479-505. MR 0991267 | Zbl 0684.35010
[3] Aizicovici S., Pavel N.H.: Anti-periodic solutions to a class of nonlinear differential equations in Hilbert space. J. Funct. Analysis 99 (1991), 387-408. MR 1121619 | Zbl 0743.34067
[4] Aftabizadeh A.R., Aizicovici S., Pavel N.H.: Anti-periodic boundary value problems for higher order differential equations in Hilbert spaces. Nonlin. Anal., T.M.A. 18, 3 (1992), 253-267. MR 1148289 | Zbl 0779.34054
[5] Erbe L., Palamides P.: Boundary value problems for second order differential systems. J. Math. Anal. Appl. 127 (1987), 80-92. MR 0904211 | Zbl 0635.34017
[6] Palamides P.K., Erbe L.H.: Semi-periodic boundary value problems. Diff. Eqns (C. M. Daferemos et al, eds.), LNPAM/118, Dekker, Inc., New York, 1989. MR 1021756
[7] Erbe L.H., Lin X., Wu J.: Solvability of boundary value problems for vector differential systems. To appear in Proc. Royal-Soc. Edinbourgh.
[8] Gaines R.E., Mawhin J.: Ordinary differential equations with nonlinear boundary conditions. J. Diff. Eqns 26, 2 (1977) 200-222. MR 0463557 | Zbl 0326.34021
[9] Půža B.: On one class of solvable boundary value problems for ordinary differential equations of n-th order. CMUC 30, 3 (1989), 565-577. MR 1031873
[10] Roach G.F.: Green’s functions. Cambridge Univ. Press, Cambridge (1982) Zbl 0522.65075
[11] Collatz L.: Funkcionální analýza a numerická matematika. SNTL, Praha 1970.
[12] Andres J., Vlček V.: On four-point regular BVPs for second-order quasilinear ODEs. Acta UPO, Fac. Rer. Nat., Math. XXXI, Vol. 105 (1992), 37-44. MR 1212604
[13] Bihari I.: Notes on a nonlinear integral equation. Stud. Sci. Math. Hung. 2 (1967), 1-6. MR 0211231 | Zbl 0147.10302
Partner of
EuDML logo