Previous |  Up |  Next

Article

References:
[1] Swick K. E.: Asymptotic behavior of the solutions of certain third order differential equations. SIAM J. Appl. Math. 19, 1, 1970, 96-102. MR 0267212 | Zbl 0212.11403
[2] Yoshizawa T.: Stability theory by Liapunov's second method. Math. Soc. Japan, Tokyo 1966. MR 0208086
[3] Andres J.: On stability and instability of the roots of the oscillatory function in a certain nonlinear differential equation of the third order. Čas.pěst.mat. 3, 1986, 225-229. MR 0853786
[4] Voráček J.: Über eine nichtlineare Differentialgleichung dritter Ordnung. Czech. Math. J. 20, 95, 1970, 207-219. MR 0259237
[5] Coppel W. A.: Stability and asymptotic behavior of differential equations. D.C. Heath, Boston 1965. MR 0190463 | Zbl 0154.09301
[б] Barbalat I.: Systèmes ďéquations différencielles ďoscillations non linéaires. Rev. Math. Pures Appl. 4, 2, 1959, 267-270. MR 0111896
[7] Andres O.: Boundedness of solutions of the third order differential equation with the oscillatory restoring and forcing terms. Czech. Math. J., 36, 1, 1986, 1-6. MR 0822859
[8] Bakaev, Yu. N.: Synchronization properties of the automatic control phase system of the third order. (in Russian). Radiotekh. Elektron. 10, 6, 1965, 1083-1087.
[9] Andres O., Štrunc M.: Lagrange-like stability of local cycles to a certain forced phase-locked loop described by the third-order differential equation. To appear in Rev. Roum. Sci.Techn. 32, 2, 1987, 219-223.
Partner of
EuDML logo