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1. Considering the equatior
x + ax’” + g(x)x” + h(x) = p(t), (1)

where a>0 is a constant, p(t)e& c{0, ™), g(x),h(x)€ Cl(—co,
o0o) and h(x) is an oscillatory function in the whole interval
(- @, 00) with isolated zero points X, K.E.Swick [1] has
proved under

w N
[ lpo)]ar< (2)
0

the following

Theorem O. If there exist such positive constants b,c that
the assumptions

201



X
1y % (5) g(s)ds 2 b,

2) h7(x) £c¢ with cqab,
3) h(x)sgn x 20

are fulfilled for all x€ (- oo, o), then all solutions x(t)
of (1) are bounded satisfying

lim x(t) = x, lim x“(t) = lim x"°(t) = O. (3)
t—=»00 t->m t—=>00

The aim of the present paper is to make the above result
more precize in two directions, namely (i) condition 2) may
be localized to the origin and (ii) h(x)sgn x may run bellow
the x-axis for g(x) = b0, both, when |h(x)| is bounded
everywhere.

2. Hence let us assume

lim sup Ih(X)l < o (4)
| x| >0

and recall several well-known results at first.

Lemma 1. Let all solutions x(t) of (1) be bounded together
with their derivatives x (t),x""(t). If (3) is satisfied for
those of autonomous equation (1) (i.e. p(t) = 0), then (3)
is also true for all solutions x(t) of (1) with (2).

Markus-Opial-Yoshizawa theorem [2, p.59], when specified to

(1).
Lemma 2. If there exists such an h-neighbourhood of the root
X of h(x) in (1) with p(t) = O that conditions

2°) ag(x) - h"(x) 28 >0 (8 -const.),

3°) h7°(x)>0,

4) g°(x) =0
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are satisfied for 0< |x - X|<h, then X is asymptotically
stable. )

For the proof see [3] .

Remark 1. It can be readily checked that the basin of attra-
ctivity due to X is determined by |g”(x)x’| £ 8()( 50 -
small enough constant), while for g(x) £ b>0 even by
h(x)sgn(x-x) >0, because of the form of Liapunov’s function
employed in [3].

Lemma 3. If there exist such positive constants b,G that
condition
oy p £ £ 2
1°) b = g(x) £6<a
is satisfied for all x&€ (- o, ) together with (4) and

msup |p(t)| <o ,

5) 1i
t-»00

6) lim sup lip(s)dsl‘: @
t 00 :

then there exists also a constant D’ such that all solutions
x(t) of (1) satisfy

Crimosup ([xT(t)l + Ix“7(t)] )< . (5)
t-»00

For the proof see [4].

Lemma 4. If there exists (finite)

lim x(t)
t»>®

of (1) satisfying (4), (5) and 5) of Lemma 3, then there is
also

] .

lim x“(t) (37)

t->® t-»®

u
—
-
3
X
.
N
—
t
-~
un
o
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P roo f. This assertion follows directly from the theorem

introduced in {5, p.14q , because of lim sup | x"““(t)] £ .
t-»00

t
Lemma 5. If there exists (finite) lim gh(x(s))ds for
t-00 o
x(t) of (1), then
lim h(x(t)) = O
t->
and consequently lim x(t) = X. (6)

t->m®

-known lemma of Barb3lat [6].

Lemma 6. Under the assumptions of Lemma 3 every bounded so-
lution x(t) of (1) either satisfies relation (3) or there
exists such a root X of h(x) that (x(t) - X) oscillates.

P roof - can be performed just in the same way as in [7].
3. Assuming all solutions of (1) being bounded, we now will
deduce several important consequences of the above statements.

Consequence 1. If h(x)sgn x 2 0 is satisfied for all x, then
every bounded solution x(t) of (1) either satisfies (6) or

m inf |x(t)]) under (5), 6).

oscillates (i.e. lim sup |x(t)l >0 = 1li
t>® t-»00

P roof. If x(t) is not oscillatory, then there is either

x(t) =0 or x(t) £ 0 for t great, say t = T and

t

S h(x(s))ds
T

is a monotone function. Thus there exists finite (cf. (5), 6))
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t

lim g h(x(s))ds
t»o Y

and our assertion is implied by Lemma 5 immediately.

Consequence 2. Let the assumptions of Lemma 3 be fulfilled
with conditions 5), 6) replaced by (2). If h(x)sgn x =0 is
satisfied for all x and

e

2°%) ag(0) - h"(0)>0,

oo

3°7) h’(0) >0,
4”) g¢°(0) =0,

then (3)'is satisfied for every bounded solution x(t) of (1).

x(t) of (1) either oscillates or satisfies (6). However,
conditions 2°7), 3°7), 47) imply the existence of such an
h-neighbourhood of the origin that assumptions of Lemma 2
are valid in it and therefore a trivial solution of autonom-
ous equation (1) (i.e. p(t) = O) is asymptotically stable.
Hence, any oscillatory solution must be attracted to the
origin with respect to Remark 1 and Lemma 3 and so such a
possibility is reduced to (6) with X = O for p(t) = O.

Thus (3) is immediately implied by Lemma 3 and Lemma 4
and the same is true even for nonautonomous equation (1) in
view of Lemma 1.

&
Consequence 3. Let h’(X) # O be satisfied for all zero points
of h(x). If

.

2°) ab - h"(x) 28 > 0 (5 -const.)

holds for all x and az> g(x) = b>0, then svery bounded so-
lution x(t) of (1) obeys (3), provided (2) and (4).
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P roof. Lemma 6 asserts that every bounded solution x(t)
of (1) either satisfies (3) or there exists a root x of h(x)
such that (x(t) - X) oscillates, provided p(t) = O and
a2>»g(x) = b>0 (i.e. assumptions of Lemma 3). However,
assuming h“(X) # 0 and ab - h“(x) =8 >0, the roots X of

h(x) with h"(X)> 0 are asymptotically stable and consequently
any nontrivial x(t) of autonomous equation (1) is attracted
to some x with h“(X)> 0 (and therefore bounded as well) with
respect to Remark 1. The remainder of the proof immediately
follows from Lemma 1 and Lemma 4.

Remark 2. It is clear from the ideas introduced above that
assumption h”(X) # 0 of Consequence 3 can be replaced by

a weaker one, namely h(x)sgn(x - X) # 0, in a suitable re-
duced neighbourhood of X, but not h(x)sgn x<0.

4. In the final section boundedness results will be given.

Theorem 1. Under the assumptions of Consequence 2 all solu-
tions of (1) are bounded satisfying (3).

P roof. If any solution x(t) of (1) would not be bounded
e.g. . =

lim sup x(t) = o
t=o

(the case of lim inf x(t) = - oo
t=m
can be treated quite analogically), then integrating (1) from

a suitable T to t = T and using the above assumptions, we get
the following inequality



t t

b(x(t) - x(T))san x £ ‘g p(s)dsl - S h(x(s))sgn xds + a\x'(t) -
T T

- x'(T)‘ + \x"(t) - x"(T)\ %

<

t t
|S p(s)ds| - Slh(x(s))l ds + 2max(a,1)D” ,
T T

i.e. ‘x(t)] £ lx(T)\ + %(Zmax(a,l)D' + P),

where P is a constant implied by (2), contradictionally. The

remaining part of our assertion is included in Consequence 2.

Theorem 2. Let the assumptions of Consequence 3 be fulfilled
with b <a2/4. If conditions (2) and (4) yield such constants
H,P,Py that lp(t)] £p,

t
lg p(s)dsl £ PO
0

for t = 0 and lh(x)] £ 4 for all x € (-, oo) together with

P
MK Rg)s dXeFq ) > B G e 2 o)

where X, are the roots of h(x) with h’(X, )>0 and ;k-1'§k+1
denote the couple of adjacent zero points of Yk (k = 0,%2,

t4,...), then all solutions of (1) are bounded satisfying

(3).

verified quite analogously to [7]. Let us note that this
follows directly from the assumptions of Consequence 3 for
the autonomous equation even for g(x) # b. Indeed, if any

its solution would not be bounded i.e. 1lim sup x(t) = oo
t-»00
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or 1lim inf x(t) = - oo, then such a zero point of h(x)
t=

exists attracting x(t) asymptotically with respect to Remark
1 and Lemma 3, contradictionally. The remaining part of our
assertion is included in Consequence 3.

Remark 3. Considering equation (1) with a2/4->g(x) =b>o0
and (4), it is clear that Theorem O of Swick [i] can be ge-
neralized in the following way: under 2), 3) condition 1)
takes the local form ab - h“(0)>0 and under 1), 3) condition
2) can be replaced by much weaker assumption of oscillatory
h(x) with (7), in general, but not h(x)sgn x<O0 satisfied in
reduced neighbourhoods of the zero points of h(x).

Remark 4. Further generalization could be certainly done if
either ag(x) is great enough or |g”(x)| is sufficiently
small. This way is very important from the technical point
of v1ew, because of considering the phase synchronization
problem 8, 9]
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ASYMPTOTICKE VLASTNOSTI REBENf JISTE DIFERENCIALNE

ROVNICE TRETfHO RADU S OSCILATORICKYM 0BNOVUJfcIM CLENEM

Souhrn

V praci je upresnén a doplnén Swicktv vysledek [1],
tykajici se vlastnosti (3), kterou nabyvaji vSechna reseni
rovnice (1). Za predpokladu o ohranidenosti funkce h(x) je
ukézano, jak mdZe byt podminka 2) jeho véty O lokalizovana
do podéatku a zejﬁéna, e funkce h(x)sgn x mGZe zabihat i pod
osu X,

ACUMITOTVYECKNAE CBOJICTBA PEWEHNMA

OJHOI'0 IV$$EPEHIMAJBEHOIO YPABHEHMS TPETBEIO NOPAJKA

C OCIMJIIMPYOIVIM BOCCTAHABIMBAKIVM UJEHOM

PesbMme
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B paGore yTouHsiercd M ZonmoJHseTcs peayabrar CBuka [l],
oTHocsmuiics K cBolicTBy (3) , KOTOpOMYy NOLUMHADTCS BCe pele-
Hus ypeBHenus (1) . BBUAY npeAmoJOXeHMs OTpPRHMUEHHOCTH QyHK-
uuum h(x) mnokasaHo, YTO ycJaoBue 2) mTeopeMH O MOXHO JOKaJIU=-
30BaTh B HAUAJO KOODAMHAT M HokasaHo, uTo QyHkuma h(x)sgn x
MOXeT HexXOJUThCS TOXe IoJ OCHD X.
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