Article
Keywords:
boundary value problem; differential inclusion; contractive set-valued map; fixed point
Summary:
We consider a boundary value problem for first order nonconvex differential inclusion and we obtain some existence results by using the set-valued contraction principle.
References:
[1] Boucherif, A., Merabet, N. Chiboub-Fellah:
Boundary value problems for first order multivalued differential systems. Arch. Math. (Brno) 41 (2005), 187–195.
MR 2164669
[2] Castaing, C., Valadier, M.:
Convex Analysis and Measurable Multifunctions. Springer-Verlag, Berlin, 1977.
MR 0467310 |
Zbl 0346.46038
[3] Cernea, A.:
Existence for nonconvex integral inclusions via fixed points. Arch. Math. (Brno) 39 (2003), 293–298.
MR 2032102 |
Zbl 1113.45014
[4] Cernea, A.:
An existence result for nonlinear integrodifferential inclusions. Comm. Appl. Nonlinear Anal. 14 (2007), 17–24.
MR 2364691
[5] Cernea, A.:
On the existence of solutions for a higher order differential inclusion without convexity. Electron. J. Qual. Theory Differ. Equ. 8 (2007), 1–8.
MR 2295686 |
Zbl 1123.34046
[6] Covitz, H., Nadler jr., S. B.:
Multivalued contraction mapping in generalized metric spaces. Israel J. Math. 8 (1970), 5–11.
DOI 10.1007/BF02771543 |
MR 0263062
[7] Kannai, Z., Tallos, P.:
Stability of solution sets of differential inclusions. Acta Sci. Math. (Szeged) 61 (1995), 197–207.
MR 1377359 |
Zbl 0851.34015
[9] Tallos, P.:
A Filippov-Gronwall type inequality in infinite dimensional space. Pure Math. Appl. 5 (1994), 355–362.
MR 1343457