[1] Abdel-Baky, R. A.:
On the congruences of the tangents to a surface. Anz. Österreich. Akad. Wiss. Math.-Natur. Kl. 136 (1999), 9–18.
MR 1908813 |
Zbl 1017.53003
[2] Abdel-Baky, R. A.:
On instantaneous rectilinear congruences. J. Geom. Graph. 7 (2) (2003), 129–135.
MR 2071274 |
Zbl 1066.53036
[3] Abdel Baky, R. A.:
Inflection and torsion line congruences. J. Geom. Graph. 11 (1) (2004), 1–14.
MR 2364050
[5] Blaschke, W.:
Vorlesungen über Differential Geometrie. Dover Publications, New York, 1945.
MR 0015247
[7] Clifford, W. K.: Preliminary Sketch of bi-quaternions. Proc. London Math. Soc. 4 (64, 65) (1873), 361–395.
[8] Eisenhart, L. P.: A Treatise in Differential Geometry of Curves and Surfaces. New York, Ginn Camp., 1969.
[9] Gugenheimer, H. W.: Differential Geometry. Graw-Hill, New York, 1956.
[13] Karger, A., Novak, J.:
Space Kinematics and Lie Groups. Gordon and Breach Science Publishers, New York, 1985.
MR 0801394
[14] Koch, R.:
Zur Geometrie der zweiten Grundform der Geradenkongruenzen des $E^3$. Verh. K. Acad. Wet. Lett. Schone Kunsten Belg., Kl. Wet. 43 (162) (1981).
MR 0629825
[15] Kose, Ö.:
Contributions to the theory of integral invariants of a closed ruled surface. Mech. Mach. Theory 32 (2) (1997), 261–277.
DOI 10.1016/S0094-114X(96)00034-1
[16] Mc-Carthy, J. M.:
On the scalar and dual formulations of curvature theory of line trajectories. ASME, J. Mech. Transmiss. Automation in Design 109 (1987), 101–106.
DOI 10.1115/1.3258772
[17] Muller, H. R.:
Kinematik Dersleri. Ankara University Press, 1963.
MR 0157519
[18] Schaaf, J. A.:
Curvature theory of line trajectories in spatial kinematics. Doctoral dissertation, University of California, Davis (1988).
MR 2636385
[20] Stachel, H.: Instantaneous spatial kinematics and the invariants of the axodes. Tech. report, Institute für Geometrie, TU Wien 34, 1996.
[21] Veldkamp, G. R.:
On the use of dual numbers, vectors, and matrices in instantaneous spatial kinematics. Mech. Mach. Theory 11 (1976), 141–156.
DOI 10.1016/0094-114X(76)90006-9
[22] Weatherburn, M. A.: Differential Geometry of Three Dimensions. Cambridge University Press, 1, 1969.
[23] Yang, A. T.: Application of Quaternion Algebra and Dual Numbers to the Analysis of Spatial Mechanisms. Doctoral dissertation, Columbia (1967).