Previous |  Up |  Next

Article

Keywords:
the general linear Lie algebra; derivations of Lie algebras; commutative rings
Summary:
Let $R$ be an arbitrary commutative ring with identity, $\operatorname{gl}(n,R)$ the general linear Lie algebra over $R$, $d(n,R)$ the diagonal subalgebra of $\operatorname{gl}(n,R)$. In case 2 is a unit of $R$, all subalgebras of $\operatorname{gl}(n,R)$ containing $d(n,R)$ are determined and their derivations are given. In case 2 is not a unit partial results are given.
References:
[1] Benkart, G. M., Osbom, J. M.: Derivations and automorphisms of non-associative matrix algebras. Trans. Amer. Math. Soc. 263 (1981), 411–430. DOI 10.1090/S0002-9947-1981-0594417-5 | MR 0594417
[2] Cao, Y., Tang, Z.: Automorphisms of the Lie algebras of strictly upper triangular matrices over a commutative ring. Linear Algebra Appl. 360 (2003), 105–122. MR 1948476
[3] Jøndrup, S.: Automorphisms of upper triangular matrix rings. Arch. Math. 49 (1987), 497–502. DOI 10.1007/BF01194296 | MR 0921115
[4] Jøndrup, S.: The group of automorphisms of certain subalgebras of matrix algebras. J. Algebra 141 (1991), 106–114. DOI 10.1016/0021-8693(91)90206-N | MR 1118318
[5] Jøndrup, S.: Automorphisms and derivations of upper triangular matrix rings. Linear Algebra Appl. 221 (1995), 205–218. MR 1331800
[6] Wang, D., Ou, S., Yu, Q.: Derivations of the intermediate Lie algebras between the Lie algebra of diagonal matrices and that of upper triangular matrices over a commutative ring. Linear and Multilinear Algebra 54 (2006), 369 – 377. DOI 10.1080/03081080500412463 | MR 2236037 | Zbl 1161.17312
[7] Wang, D., Yu, Q.: Derivations of the parabolic subalgebras of the general linear Lie algebra over a commutative ring. Linear Algebra Appl. 418 (2006), 763–774. MR 2260227 | Zbl 1161.17313
Partner of
EuDML logo