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DERIVATIONS OF THE SUBALGEBRAS INTERMEDIATE
THE GENERAL LINEAR LIE ALGEBRA

AND THE DIAGONAL SUBALGEBRA
OVER COMMUTATIVE RINGS

Dengyin Wang and Xian Wang

Abstract. Let R be an arbitrary commutative ring with identity, gl(n,R) the
general linear Lie algebra over R, d(n,R) the diagonal subalgebra of gl(n,R).
In case 2 is a unit of R, all subalgebras of gl(n,R) containing d(n,R) are
determined and their derivations are given. In case 2 is not a unit partial
results are given.

1. Introduction

Let R be a commutative ring with identity, R∗ the subset of R consisting of all
invertible elements in R, I(R) the set consisting of all ideals of R. Let gl(n,R) be
the general linear Lie algebra consisting of all n× n matrices over R and with the
bracket operation: [x, y] = xy−yx. We denote by d(n,R) (resp., t(n,R)) the subset
of gl(n,R) consisting of all n× n diagonal (resp., upper triangular) matrices over
R. Let E be the identity matrix in gl(n,R), RE the set {rE | r ∈ R} consisting of
all scalar matrices, and Ei,j the matrix in gl(n,R) whose sole nonzero entry 1 is in
the (i, j) position. For A ∈ gl(n,R), we denote by A′ the transpose of A.

For R-modules M and K, we denote by HomR(M,K) the set of all homomor-
phisms of R-modules from M to K. HomR(M,M) is abbreviated to HomR(M).
For 1 ≤ i ≤ n, χi : d(n,R) → R, defined by χi(diag(d1, d2, . . . , dn)) = di, is a
standard homomorphism from d(n,R) to R.

Recently, significant work has been done in studying automorphisms and deriva-
tions of matrix Lie algebras (or sometimes matrix algebras) and their subalgebras
(see [1]–[7]). Derivations of the parabolic subalgebras of gl(n,R) were described in
[7]. Derivations of the subalgebras of t(n,R) containing d(n,R) were determined
in [6]. In this article, when 2 is a unit of R, all subalgebras of gl(n,R) containing
d(n,R) are determined and their derivations are given. In case 2 is not a unit
partial results are given.
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2. The subalgebras of gl(n,R) containing d(n,R)

Definition 2.1. Let Φ = {Ai,j ∈ I(R) | 1 ≤ i, j ≤ n} be a subset of I(R)
consisting of n2 ideals of R. We call Φ a flag of ideals of R, if

(1) Ai,i = R, i = 1, 2, . . . , n.
(2) Ai,kAk,j ⊆ Ai,j for any i, j, k (1 ≤ i, j, k ≤ n).

Example 2.2. If i 6= j, let Ai,j be 0, and let Ai,i = R for i = 1, 2, . . . , n. Then
Φ = {Ai,j | 1 ≤ i, j ≤ n} is a flag of ideals of R.

Example 2.3. If all Ai,j are taken to be R, then Φ = {Ai,j | 1 ≤ i, j ≤ n} is a
flag of ideals of R.

Theorem 2.4. If Φ = {Ai,j | 1 ≤ i, j ≤ n} is a flag of ideals of R, then
LΦ =

∑n
i=1
∑n
j=1Ai,jEi,j is a subalgebra of gl(n,R) containing d(n,R).

Proof. Suppose that Φ = {Ai,j | 1 ≤ i, j ≤ n} is a flag of ideals of R and
LΦ =

∑n
i=1
∑n
j=1Ai,jEi,j . Let

x =
n∑
i=1

n∑
j=1

ai,jEi,j ∈ LΦ , y =
n∑
i=1

n∑
j=1

bi,jEi,j ∈ LΦ ,

where ai,j , bi,j ∈ Ai,j . It is obvious that rx+ sy ∈ LΦ for any r, s ∈ R. Notice that

[x, y] =
n∑
i=1

n∑
j=1

ci,jEi,j , where ci,j =
n∑
k=1

(ai,kbk,j − bi,kak,j) .

By assumption (2) on Φ, we know that (ai,kbk,j−bi,kak,j) ∈ Ai,j , forcing ci,j ∈ Ai,j
and [x, y] ∈ LΦ. Hence LΦ is a subalgebra of gl(n,R). Assumption (1) on Φ shows
that LΦ contains d(n,R). �

The following result shows that these LΦ nearly exhaust all subalgebras of
gl(n,R) containing d(n,R).

Theorem 2.5. If L is a subalgebra of gl(n,R) containing d(n,R), then there exists
a flag Φ = {Ai,j | 1 ≤ i, j ≤ n} of ideals of R such that

2L ⊆ LΦ ⊆ L .

Proof. Let L be a subalgebra of gl(n,R) containing d(n,R). For ∀i, j (1 ≤ i, j ≤ n),
define

Ai,j = {ai,j ∈ R | ai,jEi,j ∈ L} ,

and set

Φ = {Ai,j | 1 ≤ i, j ≤ n} ,

LΦ =
n∑
i=1

n∑
j=1

Ai,jEi,j .

In the following, we will prove that Φ is a flag of ideals of R, and 2L ⊆ LΦ ⊆ L.
It’s obvious that all Ai,j are ideals of R and Ai,i = R for i = 1, 2, · · · , n. If i 6= j
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and ai,k ∈ Ai,k, ak,j ∈ Ak,j , then by [ai,kEi,k, ak,jEk,j ] = ai,kak,jEi,j ∈ L, we see
that ai,kak,j ∈ Ai,j , forcing Ai,kAk,j ⊆ Ai,j . If i = j, since Ai,i = R, we also have
that Ai,kAk,j ⊆ Ai,j . Thus Φ is a flag of ideals of R. It is easy to see that LΦ ⊆ L.
On the other hand, for x =

∑n
i=1
∑n
j=1 ai,jEi,j ∈ L, if k 6= l, then by[

Ek,k, [El,l,−x]
]

= ak,lEk,l + al,kEl,k ∈ L ,

[Ek,k, ak,lEk,l + al,kEl,k] = ak,lEk,l − al,kEl,k ∈ L ,
we see that 2ak,lEk,l ∈ L, 2al,kEl,k ∈ L. This shows that 2ak,l ∈ Ak,l, 2al,k ∈ Al,k,
forcing 2x ∈ LΦ. So 2L ⊆ LΦ. �

Corollary 2.6. Assume that 2 ∈ R∗, then L is a subalgebra of gl(n,R) containing
d(n,R) if and only if there exists a flag Φ = {Ai,j | 1 ≤ i, j ≤ n} of ideals of R
such that L = LΦ.
Remark 2.7. Without the assumption 2 ∈ R∗, Corollary 2.6 does not hold. The
following is an example. Let R be Z/2Z (Z is the ring of all integer numbers),

then R has only two ideals: 0 and R. Set L =
{(a b

b c

)
| a, b, c ∈ Z/2Z

}
. Then

L is a subalgebra of gl(2, Z/2Z) containing d(2, Z/2Z), but L 6= LΦ for any flag
Φ = {Ai,j | 1 ≤ i, j ≤ 2} of ideals of R.

3. Construction of certain derivations of LΦ

Let LΦ =
∑n
i=1
∑n
j=1Ai,jEi,j be a fixed subalgebra of gl(n,R) containing

d(n,R), with Φ = {Ai,j ∈ I(R) | 1 ≤ i, j ≤ n} a flag of ideals of R. We denote
by Der LΦ the set consisting of all derivations of LΦ. We now construct certain
derivations of LΦ for building the derivation algebra Der LΦ of LΦ. For Ai,j ∈ Φ,
let Bi,j denote the annihilator of Ai,j in R, i.e., Bi,j = {r ∈ R | rAij = 0}.

(A) Inner derivations

Let x ∈ LΦ, then ad x : LΦ → LΦ, y 7→ [x, y], is a derivation of LΦ, called the
inner derivation of LΦ induced by x. Let ad LΦ denote the set consisting of all
ad x, x ∈ LΦ, which forms an ideal of Der LΦ.

(B) Transpose derivations
Definition 3.3. Let Π = {πi,j ∈ HomR(Ai,j , Aj,i) | 1 ≤ i, j ≤ n} be a set
consisting of n2 homomorphisms of R-modules. We call Π suitable for transpose
derivations, if the following conditions are satisfied for all i, j (1 ≤ i, j ≤ n):
(1) πi,i = 0;
(2) πi,j(Ai,kAk,j) = 0 for all k which satisfies k 6= i and k 6= j;
(3) πi,j(Ai,j) ⊆ Bk,j and πi,j(Ai,j) ⊆ Bi,k for all k which satisfies k 6= i and k 6= j;
(4) 2πi,j(Ai,j) = 0.
Remark. In case 2 is a unit, (4) means that πi,j are necessarily zero maps.

Using the homomorphism Π = {πi,j ∈ HomR(Ai,j , Aj,i) | 1 ≤ i, j ≤ n} which
is suitable for transpose derivations, we define φΠ : LΦ → LΦ by sending any∑n
i=1
∑n
j=1 ai,jEi,j ∈ LΦ to

∑n
i=1
∑n
j=1 πi,j(ai,j)Ej,i.
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Lemma 3.4. The map φΠ as defined above, is a derivation of LΦ.

Proof. Let

x =
n∑
i=1

n∑
j=1

ai,jEi,j ∈ LΦ , ai,j ∈ Ai,j ,

y =
n∑
i=1

n∑
j=1

bi,jEi,j ∈ LΦ , bi,j ∈ Ai,j .

Obviously, φΠ(rx+ sy) = rφΠ(x) + sφΠ(y) for ∀r, s ∈ R. Write

[x, y] =
n∑
i=1

n∑
j=1

ci,jEi,j , where ci,j =
n∑
k=1

(ai,kbk,j − bi,kak,j) .

Because Π is suitable for transpose derivations, we have that

φΠ
(
[x, y]

)
=
n∑
i=1

n∑
j=1

πi,j(ci,j)Ej,i =
n∑
i=1

n∑
j=1

πi,j

( n∑
k=1

(ai,kbk,j − bi,kak,j)
)
Ej,i

=
n∑
i=1

n∑
j=1

[
(ai,i − aj,j)πi,j(bi,j) + (bj,j − bi,i)πi,j(ai,j)

]
Ej,i

(by assumption (2)).
On the other hand,[
φΠ(x), y

]
+
[
x, φΠ(y)

]
=
n∑
i=1

n∑
j=1

[ n∑
k=1

(
πk,j(ak,j)bk,i − bj,kπi,k(ai,k)

− πk,j(bk,j)ak,i + aj,kπi,k(bi,k)
)]
Ej,i

=
n∑
i=1

n∑
j=1

[
(aj,j − ai,i)πi,j(bi,j) + (bi,i − bj,j)πi,j(ai,j)

]
Ej,i

(by assumption (3)).

By assumption (4) on Π, we see that φΠ
(
[x, y]

)
=
[
φΠ(x), y

]
+
[
x, φΠ(y)

]
. Hence

φΠ is a derivation of LΦ. �

φΠ is called a transpose derivation of LΦ.

(C) Ring derivations

Definition 3.5. Let Σ = {σi,j ∈ HomR(Ai,j), σ ∈ HomR
(
d(n,R)

)
| 1 ≤ i, j ≤ n}

be a set consisting of n2 + 1 endomorphisms of R-modules. We call Σ suitable for
ring derivations if the following conditions are satisfied for ∀ i, j (1 ≤ i, j ≤ n):

(1) χi
(
σ(D)

)
− χj

(
σ(D)

)
⊆ (Bi,j ∩Bj,i) for ∀ D ∈ d(n,R);

(2) σ
(
ai,jaj,i(Ei,i−Ej,j)

)
=
(
σi,j(ai,j)aj,i+ai,jσj,i(aj,i)

)
(Ei,i−Ej,j), ∀ ai,j ∈

Ai,j ,∀ aj,i ∈ Aj,i;
(3) σi,i = 0, i = 1, 2, . . . n
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(4) When i 6= j, σi,j(ai,kak,j) = σi,k(ai,k)ak,j + ai,kσk,j(ak,j) for ∀ k (1 ≤ k ≤
n), ∀ ai,k ∈ Ai,k and ∀ ak,j ∈ Ak,j .

Using Σ =
{
σi,j ∈ HomR(Ai,j), σ ∈ HomR(d(n,R)) | 1 ≤ i, j ≤ n

}
which is

suitable for ring derivations, we define φΣ : LΦ → LΦ by sending any
∑n
i=1
∑n
j=1 ai,j

Ei,j ∈ LΦ to
∑

1≤i 6=j≤n σi,j(ai,j)Ei,j + σ
(∑n

k=1 ak,kEk,k
)
.

Lemma 3.6. The map φΣ, as defined above, is a derivation of LΦ.

Proof. Let x =
∑n
i=1
∑n
j=1 ai,jEi,j ∈ LΦ, y =

∑n
i=1
∑n
j=1 bi,jEi,j ∈ LΦ, where

ai,j , bi,j lie in Ai,j . It is obvious that φΣ(rx+ sy) = rφΣ(x) + sφΣ(y) for any r, s ∈
R. We know [x, y] =

∑n
i=1
∑n
j=1 ci,jEi,j , where ci,j =

∑n
k=1(ai,kbk,j − bi,kak,j).

Because Σ is suitable for ring derivations, we have that

φΣ
(
[x, y]

)
=

∑
1≤i6=j≤n

[ n∑
k=1

(
σi,j(ai,kbk,j − bi,kak,j)

)]
Ei,j

+ σ
[ n∑
i=1

n∑
k=1

(ai,kbk,i − bi,kak,i)Ei,i
]

=
∑

1≤i 6=j≤n

[ n∑
k=1

(
σi,j(ai,kbk,j − bi,kak,j))

]
Ei,j

+ σ
( n∑
i=1

n∑
k=1

ai,kbk,i(Ei,i − Ek,k)
)

(note that
n∑
i=1

n∑
k=1

(ai,kbk,i − bi,kak,i)Ei,i =
n∑
i=1

n∑
k=1

ai,kbk,i(Ei,i − Ek,k))

=
∑

1≤i 6=j≤n

[ n∑
k=1

(
σi,k(ai,k)bk,j + ai,kσk,j(bk,j)

− σi,k(bi,k)ak,j − bi,kσk,j(ak,j)
)]
Ei,j

+
n∑
i=1

n∑
k=1

[
σi,k(ai,k)bk,i + ai,kσk,i(bk,i)

]
(Ei,i − Ek,k) ,

(by assumption (2) and (4)).

On the other hand,

[
φΣ(x), y

]
+
[
x, φΣ(y)

]
=
[ ∑

1≤i 6=j≤n
σi,j(ai,j)Ei,j + σ

( n∑
i=1

ai,iEi,i

)
, y
]

+
[
x,

∑
1≤i6=j≤n

σi,j(bi,j)Ei,j + σ
( n∑
i=1

bi,iEi,i

)]
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=
[ ∑

1≤i 6=j≤n
σi,j(ai,j)Ei,j , y

]
+
[
x,

∑
1≤i 6=j≤n

σi,j(bi,j)Ei,j
]

(by assumption (1))

=
[ n∑
i=1

n∑
j=1

σi,j(ai,j)Ei,j , y
]

+
[
x,

n∑
i=1

n∑
j=1

σi,j(bi,j)Ei,j
]

(by assumption (3))

=
∑

1≤i 6=j≤n

[ n∑
k=1

σi,k(ai,k)bk,j − bi,kσk,j(ak,j)

− σi,k(bi,k)ak,j + ai,kσk,j(bk,j)
]
Ei,j

+
n∑
i=1

[ n∑
k=1

σi,k(ai,k)bk,i + bk,iσi,k(ai,k)

− σi,k(bi,k)ak,i − ak,iσi,k(bi,k)
]
Ei,i

=
∑

1≤i6=j≤n

[ n∑
k=1

σi,k(ai,k)bk,j − bi,kσk,j(ak,j)

− σi,k(bi,k)ak,j + ai,kσk,j(bk,j)
]
Ei,j

+
n∑
i=1

n∑
k=1

[
σi,k(ai,k)bk,i + bk,i σi,k(ai,k)

]
(Ei,i − Ek,k) .

We see that [
φΣ(x), y

]
+
[
x, φΣ(y)

]
= φΣ

(
[x, y]

)
.

Hence φΣ is a derivation of LΦ. �

φΣ is called a ring derivation of LΦ.

4. The derivation algebra of LΦ

If n > 1, for each fixed k (1 ≤ k ≤ n − 1), we assume that n = kq + p with q
and p two non-negative integers and p ≤ k − 1. Let Dk = diag

(
Ek, 2Ek, . . . , qEk,

(q + 1)Ep
)
∈ d(n,R), k = 1, 2, . . . , n − 1 (where Ek denotes the k × k identity

matrix). Let Φ =
{
Ai,j ∈ I(R) | 1 ≤ i < j ≤ n

}
be a flag of ideals of R, we denote∑

1≤i 6=j≤nAi,jEi,j by w.

Theorem 4.1. Let R be an arbitrary commutative ring with identity, n ≥ 1,

LΦ =
n∑
i=1

n∑
j=1

Ai,jEi,j

a subalgebra of gl(n,R) containing d(n,R) with Φ = {Ai,j ∈ I(R) | 1 ≤ i < j ≤ n}
a flag of ideals of R. Then every derivation of LΦ may be uniquely written as the
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sum of an inner derivation induced by an element in w, a transpose derivation and
a ring derivation.

Proof. If n = 1, then it’s easy to determine DerLΦ. From now on, we assume that
n > 1. Let φ be a derivation of LΦ. In the following we give the proof by steps.

Step 1: There exists W0 ∈ w such that d(n,R) is stable under φ+ ad W0.

For k = 1, 2, . . . , n, we set vk =
∑n
i=k
∑i−k+1
j=1 Ai,jEi,j . Denote LΦ∩ t(n,R) by t.

For any H ∈ d(n,R), suppose that

φ(H) ≡ (
∑

1≤i<j≤n
aj,i(H)Ej,i)( mod t),

where aj,i(H) ∈ Aj,i are relative to H. By [D1, H] = 0, we have that[
H,φ(D1)

]
=
[
D1, φ(H)

]
,

which follows that∑
1≤i<j≤n

(
χj(H)− χi(H)

)
aj,i(D1)Ej,i =

∑
1≤i<j≤n

(
χj(D1)− χi(D1)

)
aj,i(H)Ej,i .

This yields that(
χj(H)−χi(H)

)
aj,i(D1) =

(
χj(D1)−χi(D1)

)
aj,i(H) , ∀ i, j(1 ≤ i < j ≤ n−1) .

In particular, we have that
ai+1,i(H) =

(
χi+1(H)− χi(H)

)
ai+1,i(D1) , i = 1, 2, . . . , n .

Let X1 =
∑n−1
i=1 ai+1,i(D1)Ei+1,i ∈ LΦ, then (φ + ad X1)

(
d(n,R)

)
⊆ t + v3. If

n = 2, this step is completed. If n > 2, for any H ∈ d(n,R), we now suppose that

(φ+ ad X1)(H) ≡
( ∑

1≤i<j≤n−1
bj+1,i(H)Ej+1,i

)
( mod t) ,

where bj+1,i(H) ∈ Aj+1,i are relative to H. By [D2, H] = 0, we have that[
H, (φ+ ad X1)(D2)

]
=
[
D2, (φ+ ad X1)(H)

]
,

which follows that∑
1≤i<j≤n−1

(χj+1(H)− χi(H))bj+1,i(D2)Ej+1,i

=
∑

1≤i<j≤n−1
(χj+1(D2)− χi(D2))bj+1,i(H)Ej+1,i .

This yields that
(χj+1(H)− χi(H))bj+1,i(D2) = (χj+1(D2)− χi(D2))bj+1,i(H) ,

for all i, j(1 ≤ i < j ≤ n− 1). In particular, we have that
bi+2,i(H) =

(
χi+2(H)− χi(H)

)
bi+2,i(D2) , i = 1, 2, . . . , n− 2 .

Let X2 =
∑n−2
i=1 bi+2,i(D2)Ei+2,i, then (φ+ ad X1 + ad X2)

(
d(n,R)

)
⊆ t+ v4. If

n = 3, this step is completed. If n > 3, we repeat above process. After n− 2 steps,
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we may assume that
(
φ+

∑n−2
i=1 ad Xi

)(
d(n,R)

)
⊆ t+ vn. For any H ∈ d, suppose

that
(
φ +

∑n−2
i=1 ad Xi

)
(H) ≡ cn,1(H)En,1( mod t), where cn,1(H) ∈ An,1 is

relative to H. By [Dn−1, H] = 0, we have that[
H,
(
φ+

n−2∑
i=1

ad Xi

)
(Dn−1)

]
=
[
Dn−1,

(
φ+

n−2∑
i=1

ad Xi

)
(H)

]
,

which follows that(
χn(H)− χ1(H)

)
cn,1(Dn−1) =

(
χn(Dn−1)− χ1(Dn−1)

)
cn,1(H) .

So we have that
cn,1(H) =

(
χn(H)− χ1(H)

)
cn,1(Dn−1) .

Let Xn−1 = cn,1(Dn−1)En,1, then
(
φ +

∑n−1
i+1 ad Xi

)(
d(n,R)

)
⊆ t. If we choose

X0 =
∑n−1
i=1 Xi, then (φ+ ad X0)

(
d(n,R)

)
⊆ t.

Similarly, we may further choose Y0 ∈
∑n
j=1

∑j−1
i=1 Ai,jEi,j (the process is

omitted) such that (φ+ ad X0 + ad Y0)
(
d(n,R)

)
⊆ d(n,R).

Thus we may chooseW0 = X0+Y0 ∈ w such that (φ+ad W0)
(
d(n,R)

)
⊆ d(n,R).

Denote φ+ ad W0 by φ1, then φ1
(
d(n,R)

)
⊆ d(n,R).

Step 2: If k 6= l, then Ak,lEk,l +Al,kEl,k is stable under φ1.
For any fixed bk,l ∈ Ak,l, we suppose that φ1(bk,lEk,l) =

∑n
i=1
∑n
j=1 ai,jEi,j ,

where ai,j ∈ Ai,j . By applying φ1 to [Ek,k, bk,lEk,l] = bk,lEk,l, we have that[
φ1(Ek,k), bk,lEk,l] + [Ek,k, φ1(bk,lEk,l)

]
= φ1(bk,lEk,l) .

This follows that

(∗)
[
φ1(Ek,k), bk,lEk,l

]
+
[
Ek,k,

n∑
i=1

n∑
j=1

ai,jEi,j

]
=
n∑
i=1

n∑
j=1

ai,jEi,j . . .

Note that φ1(Ek,k) ∈ d(n,R) (by Step 1), thus
[
φ1(Ek,k), bk,lEk,l

]
∈ Ak,lEk,l. It

is easy to see that
[
Ek,k,

∑n
i=1
∑n
j=1 ai,jEi,j

]
=
∑n
j=1 ak,jEk,j −

∑n
i=1 ai,kEi,k.

By comparing the two sides of (∗), we see that ai,j = 0 when i 6= k and j 6= k.
For the same reason, we know that ai,j = 0 when i 6= l and j 6= l. Hence
φ1(bk,lEk,l) ∈ Ak,lEk,l+Al,kEl,k, which leads to φ1(Ak,lEk,l) ⊆ Ak,lEk,l+Al,kEl,k.
Similarly, φ1(Al,kEl,k) ⊆ Ak,lEk,l +Al,kEl,k. So Ak,lEk,l +Al,kEl,k is stable under
φ1.

Step 3: There exists a ring derivation φΣ such that each Ak,lEk,l (k 6= l) is send
by φ1 − φΣ to Al,kEl,k and d(n,R) is send by it to 0.

We denote the the restriction of φ1 to d(n,R) by σ, and let σi,i : Ai,i → Ai,i be
zero. By Step 2, we know that Ak,lEk,l +Al,kEl,k is stable under φ1 if k 6= l. Now
for any k, l (1 ≤ k, l ≤ n) we define the map σk,l from Ak,l to itself according to
the following rule:

(a) σk,l = 0 when k = l;
(b) If k 6= l, define σk,l : Ak,l → Ak,l such that for any ak,l ∈ Ak,l, σk,l(ak,l)

satisfies the condition: φ1(ak,lEk,l) ≡ σk,l(ak,l)Ek,l ( mod Al,kEl,k).
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Then σ, σk,l (k 6= l) are all endomorphism of the R-modules. Set Σ =
{
σi,j ∈

HomR(Ai,j), σ | 1 ≤ i, j ≤ n
}

. We intend to prove that Σ is suitable for ring
derivations.

For all D ∈ d(n,R), ai,j ∈ Ai,j , by applying φ1 to [D, ai,jEi,j ] =
(
χi(D) −

χj(D)
)
ai,jEi,j , we have that ai,j

(
χi(σ(D))− χj(σ(D))

)
= 0, leads to χi

(
σ(D)

)
−

χj(σ(D) ∈ Bi,j . Similarly, we may prove that χi
(
σ(D)

)
− χj

(
σ(D)

)
∈ Bj,i.

For all i, j (1 ≤ i, j ≤ n), ∀ai,j ∈ Ai,j , aj,i ∈ Aj,i, by applying φ1 to [ai,jEi,j ,
aj,iEj,i] = ai,jaj,i(Ei,i−Ej,j), we have that σ

(
ai,jaj,i(Ei,i−Ej,j)

)
=
(
σi,j(ai,j)aj,i+

ai,jσj,i(aj,i)
)
(Ei,i − Ej,j).

When i 6= j, for all ai,k ∈ Ai,k, ak,j ∈ Ak,j , by applying φ1 to [ai,kEi,k, ak,jEk,j ] =
ai,kak,jEi,j , we have that[

σi,k(ai,k)Ei,k, ak,jEk,j
]

+
[
ai,kEi,k, σk,j(ak,j)Ek,j

]
= σi,j(ai,kak,j)Ei,j .

This shows that

σi,j(ai,kak,j) = σi,k(ai,k)ak,j + ai,kσk,j(ak,j) .

Now we see that Σ is suitable for ring derivations. Using Σ we construct the
ring derivation φΣ as in Section 3, and denote φ1 − φΣ by φ2. Then we see that
φ2(Ak,lEk,l) ⊆ Al,kEl,k for all k, l satisfy k 6= l and φ2 sends d(n,R) to 0.

Step 4: φ2 exactly is a transpose derivation.
By Step 3, we know that Ak,lEk,l is send by φ2 to Al,kEl,k when k 6= l and

d(n,R) is send by it to 0. Now for any k, l (1 ≤ k, l ≤ n) we define the map πk,l
from Ak,l to Al,k according to the following rule:

(a) πk,l = 0 when k = l;
(b) If k 6= l, define πk,l : Ak,l → Al,k such that for any ak,l ∈ Ak,l, σk,l(ak,l)

satisfies the condition: φ2(ak,lEk,l) = πk,l(ak,l)El,k.
Then σk,l is an homomorphism from the R-module Ak,l to Al,k. Set Π ={
πi,j ∈ HomR(Ai,j , Aj,i) | 1 ≤ i, j ≤ n

}
. We intend to prove that Π is suitable for

transpose derivations. If i 6= j, for ∀ai,k ∈ Ai,k, ∀ak,j ∈ Ak,j , by applying φ2 to
[ai,kEi,k, ak,jEk,j ] = ai,kak,jEi,j , we have that[

πi,k(ai,k)Ek,i, ak,jEk,j
]

+
[
ai,kEi,k, πk,j(ak,j)Ej,k

]
= πi,j(ai,kak,j)Ej,i .

If k 6= i, k 6= j, we see that the left side of above is 0, then πi,j(ai,kak,j) = 0, leads
to πi,j(Ai,kAk,j) = 0.

If i 6= k, i 6= j, ∀ai,k ∈ Ai,k, ∀ai,j ∈ Ai,j , by applying φ2 to [ai,kEi,k, ai,jEi,j ] = 0,
we see that [

πi,k(ai,k)Ek,i, ai,jEi,j
]

+
[
ai,kEi,k, πi,j(ai,j)Ej,i

]
= 0 .

This shows that

πi,k(ai,k)ai,jEk,j − ai,kπi,j(ai,j)Ej,k = 0 .

Thus ai,kπi,j(ai,j) = 0, leads to Ai,kπi,j(Ai,j) = 0 for i 6= k. Similarly, Ak,jπi,j(Ai,j)
= 0 for k 6= j.
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For all i 6= j, ∀ai,j ∈ Ai,j , by applying φ2 to [Ei,i, ai,jEi,j ] = ai,jEi,j , we have
that [

Ei,i, πi,j(ai,j)Ej,i
]

= πi,j(ai,j)Ej,i .

Since
[
Ei,i, πi,j(ai,j)Ej,i

]
= −πi,j(ai,j)Ej,i, we see that πi,j(ai,j) = −πi,j(ai,j)Ej,i.

So 2πi,j(Ai,j) = 0 for i 6= j. Then 2πi,j(Ai,j) = 0 for ∀i, j.
Now we see that Π is suitable for transpose derivations. Using Π we construct

the transpose derivation φΠ as in Section 3, and denote φ2 − φΠ by φ3. Then we
see that φ3(Ak,lEk,l) = 0 for all k, l satisfy k 6= l and φ3(d(n,R)) = 0. So φ3 = 0.

Thus φ = φΠ + φΣ − ad W0, as desired.
For the uniqueness of the decomposition of φ, we first prove that if φΠ + φΣ +

ad W0 = 0, then φΠ = φΣ = ad W0 = 0. Suppose that φΠ +φΣ +ad W0 = 0, where
W0 ∈ w and φΠ, φΣ are the the transpose and the ring derivation of LΦ, respectively.
By (φΠ + φΣ + ad W0)(d(n,R)) = 0, we easily see that W0 = 0. Then we have
that φΠ + φΣ = 0. By applying φΠ + φΣ to ai,jEi,j for 1 ≤ i 6= j ≤ n, ai,j ∈ Ai,j ,
we have that σi,j(ai,j)Ei,j + πi,j(ai,j)Ej,i = 0, leads to σi,j(ai,j) = πi,j(ai,j) = 0.
This forces that φΠ = φΣ = 0. Now suppose that

φ = φΠ1 + φΣ1 − ad W1 = φΠ2 + φΣ2 − ad W2 ,

is two decompositions of φ. Then we have that

(φΠ1 − φΠ2) + (φΣ1 − φΣ2) + (ad W2 − ad W1) = 0 .

Note that φΠ1−φΠ2 (resp., φΣ1−φΣ2) is also a transpose (resp., ring) derivation of
LΦ and ad W2−ad W1 = ad (W2−W1). This implies that φΣ1 = φΣ2 , φΠ1 = φΠ2

and ad W1 = ad W2. �
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