[1] Busakhla N.Yu.:
Measurable bundles of Dedekind logics. Uzbek. Mat. Zh. no. 3 (1999), 29-34 (Russian).
MR 1804809
[3] Ganiev I.G.:
Measurable bundles of lattices and their applications. Investigations in Functional Analysis and its Applications, Nauka, Moscow, 2006, pp.9-49 (Russian).
MR 2272750
[4] Gutman A.E.:
Banach bundles in the theory of lattice-normed spaces. Order-compatible Linear Operators, Trudy Inst. Mat. 29 (1995), Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat., Novosibirsk, 1995, pp.63-211 (Russian).
MR 1774033 |
Zbl 0854.46006
[6] Krein S.G., Petunin Yu.T., Semenov E.M.:
Interpolation of Linear Operators. Nauka, Moscow, 1978 (Russian); English translation: Translations of Mathematical Monographs, vol. 54, American Mathematical Society, Providence, 1982.
MR 0506343
[8] Kusraev A.G.:
Dominated Operators. Mathematics and its Applications, 519, Kluwer Academic Publishers, Dordrecht, 2000.
MR 1793005 |
Zbl 1045.47001
[9] Lacey H.E.:
The Isometric Theory of Classical Banach Spaces. Springer, New York-Heidelberg, 1974.
MR 0493279 |
Zbl 0285.46024
[10] Sarymsakov T.A.:
Topological Semifields and their Applications. Fan, Tashkent, 1989 (Russian).
MR 1200017 |
Zbl 0791.54051
[12] Vulikh B.Z.:
Introduction to the Theory of Partially Ordered Spaces. Fizmatgiz, Moscow, 1961 (Russian); English translation: Wolters-Noordhoff, Groningen, 1967.
MR 0224522 |
Zbl 0186.44601
[13] Zakirov B.S.:
The Luxemburg norm in the Orlicz-Kantorovich space. Uzbek. Mat. Zh. no. 2 (2007), 32-44 (Russian).
MR 2568484
[14] Zakirov B.S.:
Orlicz-Kantorovich lattices associated with an $L_0$-valued measure. Uzbek. Mat. Zh. no. 4 (2007), 18-34 (Russian).
MR 2569170 |
Zbl 1190.46035
[15] Zakirov B.S.:
Analytical representation of $L_0$-valued homomorphisms in Orlicz-Kantorovich modules. Mat. Trudy 10 (2007), 2 112-141 (Russian).
MR 2382419