Previous |  Up |  Next

Article

Keywords:
positive linear operators; polynomial weighted space; degree of approximation
Summary:
In this paper we extend the Duman-King idea of approximation of functions by positive linear operators preserving $e_k (x)=x^k$, $k=0,2$. Using a modification of certain operators $L_n$ preserving $e_0$ and $e_1$, we introduce operators $L_n^*$ which preserve $e_0$ and $e_2$ and next we define operators $L_{n;r}^{*}$ for $r$-times differentiable functions. We show that $L_n^*$ and $L_{n;r}^{*}$ have better approximation properties than $L_n$ and $L_{n;r}$.
References:
[1] Baskakov V.A.: An example of a sequence of linear positive operators in the space of continuous functions. Dokl. Akad. Nauk SSSR 113 (1957), 249-251. MR 0094640
[2] Becker M.: Global approximation theorems for Szász-Mirakyan and Baskakov operators in polynomial weight spaces. Indiana Univ. Math. J. 27 1 (1978), 127-142. DOI 10.1512/iumj.1978.27.27011 | MR 0493079
[3] De Vore R.A.: The Approximation of Continuous Functions by Positive Linear Operators. Springer, Berlin, New York, 1972. MR 0420083
[4] De Vore R.A., Lorentz G.G.: Constructive Approximation. Springer, Berlin, New York, 1993. MR 1261635
[5] Ditzian Z., Totik V.: Moduli of Smoothness. Springer, New York, 1987. MR 0914149 | Zbl 0715.46043
[6] Duman O., Özarslan M.A.: MKZ type operators providing a better estimation on $[1/2,1)$. Canad. Math. Bull. 50 (2007), 434-439. DOI 10.4153/CMB-2007-042-8 | MR 2344178 | Zbl 1132.41318
[7] Duman O., Özarslan M.A.: Szász-Mirakyan type operators providing a better error estimation. Appl. Math. Lett. 20 12 (2007), 1184-1188. DOI 10.1016/j.aml.2006.10.007 | MR 2384243
[8] King J.P.: Positive linear operators which preserve $x^2$. Acta Math. Hungar. 99 (2003), 203-208. DOI 10.1023/A:1024571126455 | MR 1973095 | Zbl 1027.41028
[9] Kirov G.H.: A generalization of the Bernstein polynomials. Math. Balcanica 2 2 (1992), 147-153. MR 1182946 | Zbl 0838.41017
[10] Kirov G.H., Popova L.: A generalization of the linear positive operators. Math. Balcanica 7 2 (1993), 149-162. MR 1270375 | Zbl 0833.41016
[11] Rempulska L., Walczak Z.: Modified Szász-Mirakyan operators. Math. Balcanica 18 (2004), 53-63. MR 2076077 | Zbl 1079.41022
[12] Rempulska L., Skorupka M.: Approximation properties of modified gamma operators. Integral Transforms Spec. Funct. 18 9-10 (2007), 653-662. DOI 10.1080/10652460701510527 | MR 2356794 | Zbl 1148.41025
[13] Rempulska L., Skorupka M.: On approximation by Post-Widder and Stancu operators preserving $x^2$. Kyung. Math. J., to appear. MR 2527373
[14] Stancu D.D.: On the beta approximating operators of second kind. Rev. Anal. Numér. Théor. Approx. 24 (1-2) (1995), 231-239. MR 1608424 | Zbl 0856.41019
Partner of
EuDML logo