Previous |  Up |  Next

Article

Keywords:
GS-quasigroup; affine regular decagon; affine regular pentagon
Summary:
In this article the ``geometric'' concept of the affine regular decagon in a general GS--quasigroup is introduced. The relationships between affine regular decagon and some other geometric concepts in a general GS--quasigroup are explored. The geometrical presentation of all proved statements is given in the GS--quasigroup $\Bbb C(\frac{1}{2}(1+\sqrt{5}))$.
References:
[1] Volenec V.: GS-quasigroups. Časopis Pěst. Mat. 115 (1990), 307-318. MR 1071063 | Zbl 0715.20044
[2] Kolar Z., Volenec V.: GS-trapezoids in GS-quasigroups. Math. Commun. 7 (2002), 143-158. MR 1952756 | Zbl 1016.20052
[3] Kolar-Begović Z., Volenec V.: DGS-trapezoids in GS-quasigroups. Math. Commun. 8 (2003), 215-218. MR 2026399 | Zbl 1061.20062
[4] Kolar-Begović Z., Volenec V.: Affine regular pentagons in GS-quasigroups. Quasigroups Related Systems 12 (2004), 103-112. MR 2130583 | Zbl 1073.20062
[5] Kolar-Begović Z., Volenec V.: GS-deltoids in GS-quasigroups. Math. Commun. 10 (2005), 117-122. MR 2199101 | Zbl 1089.20039
Partner of
EuDML logo