Previous |  Up |  Next

Article

Keywords:
A-loop; nucleus; inner mapping group; cocycle; linear fractional
Summary:
We investigate loops defined upon the product $\Bbb Z_m\times \Bbb Z_k$ by the formula $(a,i)(b,j) = ((a+b)/(1+tf^i(0)f^j(0)), i + j)$, where $f(x) = (sx + 1)/(tx+1)$, for appropriate parameters $s,t \in \Bbb Z_m^*$. Each such loop is coupled to a 2-cocycle (in the group-theoretical sense) and this connection makes it possible to prove that the loop possesses a metacyclic inner mapping group. If $s=1$, then the loop is an A-loop. Questions of isotopism and isomorphism are considered in detail.
References:
[1] Belousov V.D.: Proizvodnyje operacii i asociatory v lupach. Mat. Sb. 45 (1958), 51-70. MR 0093556
[2] Belousov V.D.: Osnovy teorii kvazigrupp i lup. Nauka, Moskva, 1967. MR 0218483
[3] Bruck R.H., Paige L.J.: Loops whose inner mappings are automorphisms. Ann. of Math. 63 (1956), 308-323. DOI 10.2307/1969612 | MR 0076779 | Zbl 0074.01701
[4] Csörgö P., Niemenmaa M.: Solvability conditions for loops and groups. J. Algebra 232 (2000), 336-342. DOI 10.1006/jabr.2000.8408 | MR 1783930
[5] Csörgö P., Niemenmaa M.: On connected transversals to nonabelian subgroups. European J. Combin. 23 (2002), 179-185. DOI 10.1006/eujc.2001.0544 | MR 1881549 | Zbl 0997.20031
[6] Drápal A.: Orbits of inner mapping groups. Monatsh. Math. 134 (2002), 191-206. DOI 10.1007/s605-002-8256-2 | MR 1883500 | Zbl 1005.20051
[7] Drápal A.: Structural interactions of conjugacy closed loops. Trans. Amer. Math. Soc. 360 (2008), 671-689. DOI 10.1090/S0002-9947-07-04131-1 | MR 2346467 | Zbl 1144.20043
[8] Drápal A., Jedlička P.: On loop identities that can be obtained by a nuclear identification. submitted.
[9] Drápal A.: A nuclear construction of loops with small inner mapping groups. Abh. Math. Sem. Univ. Hamburg 77 (2007), 201-218. DOI 10.1007/BF03173499 | MR 2379339 | Zbl 1145.20037
[10] Kinyon M.K., Kunen K., Phillips J.D.: Every diassociative $A$-loop is Moufang. Proc. Amer. Math. Soc. 130 (2002), 619-624. DOI 10.1090/S0002-9939-01-06090-7 | MR 1866009 | Zbl 0990.20044
[11] Myllylä K., Niemenmaa M.: On the solvability of commutative loops and their multiplication groups. Comment. Math. Univ. Carolin. 40 (1999), 209-213. MR 1732641
[12] Niemenmaa M.: On finite loops whose inner mapping groups have small orders. Comment. Math. Univ. Carolin. 37 (1996), 651-654. MR 1426930 | Zbl 0881.20006
[13] Niemenmaa M.: On connected transversals to subgroups whose order is a product of two primes. European J. Combin. 18 (1997), 915-919. DOI 10.1006/eujc.1997.0163 | MR 1485376 | Zbl 0889.20044
Partner of
EuDML logo