Article
Keywords:
A-loop; nucleus; inner mapping group; cocycle; linear fractional
Summary:
We investigate loops defined upon the product $\Bbb Z_m\times \Bbb Z_k$ by the formula $(a,i)(b,j) = ((a+b)/(1+tf^i(0)f^j(0)), i + j)$, where $f(x) = (sx + 1)/(tx+1)$, for appropriate parameters $s,t \in \Bbb Z_m^*$. Each such loop is coupled to a 2-cocycle (in the group-theoretical sense) and this connection makes it possible to prove that the loop possesses a metacyclic inner mapping group. If $s=1$, then the loop is an A-loop. Questions of isotopism and isomorphism are considered in detail.
References:
[1] Belousov V.D.:
Proizvodnyje operacii i asociatory v lupach. Mat. Sb. 45 (1958), 51-70.
MR 0093556
[2] Belousov V.D.:
Osnovy teorii kvazigrupp i lup. Nauka, Moskva, 1967.
MR 0218483
[8] Drápal A., Jedlička P.: On loop identities that can be obtained by a nuclear identification. submitted.
[11] Myllylä K., Niemenmaa M.:
On the solvability of commutative loops and their multiplication groups. Comment. Math. Univ. Carolin. 40 (1999), 209-213.
MR 1732641
[12] Niemenmaa M.:
On finite loops whose inner mapping groups have small orders. Comment. Math. Univ. Carolin. 37 (1996), 651-654.
MR 1426930 |
Zbl 0881.20006