Previous |  Up |  Next

Article

Keywords:
Delannoy numbers; tetrahedral numbers; king's walk; coordination number; crystal ball
Summary:
We establish an identity between Delannoy numbers and tetrahedral numbers of arbitrary dimension.
References:
[1] Aigner M.: Diskrete Mathematik. Vieweg, Braunschweig, 1993. MR 1243412 | Zbl 1109.05001
[2] Banderier C., Schwer S.R.: Why Delannoy numbers?. J. Statist. Plann. Inference 135 1 (2005), 40-54; CoRR math.CO/0411128: (2004). MR 2202337 | Zbl 1074.01012
[3] Conway J.H., Sloane N.J.A.: Low dimensional lattices VII: Coordination sequences. Proc. Royal Soc. London Ser. A 453 (1997), 1966 2369-2389; citeseer.ist.psu.edu/article/conway96lowdimensional.html. MR 1480120 | Zbl 1066.11505
[4] Delannoy H.: Emploi de l'échiquier pour la résolution de certains problèmes de probabilités. Association Francaise pour l'Avancement des Sciences, Bordeaux XXIV (1895), 70-90.
[5] Handbook of Discrete and Combinatorial Mathematics. Eds. K.H. Rosen et al., CRC Press, Boca Raton etc., 2000. MR 1725200 | Zbl 1044.00002
[6] Pólya G., Szegö G.: Aufgaben und Lehrsätze aus der Analysis, I. Springer, Berlin, 1970.
[7] Schröder J.: Filling boxes densely and disjointly. Comment. Math. Univ. Carolin. 44 1 (2003), 187-196. MR 2045855 | Zbl 1099.54011
[8] Schröder J.: Generalized Schröder numbers and the rotation principle. preprint, 2007. MR 2346050
[9] Stanley R.P.: Enumerative Combinatorics. Vol. 2, Cambridge University Press, Cambridge, 1999. MR 1676282 | Zbl 0978.05002
[10] Vassilev M., Atanassov K.: On Delan$[$n$]$oy numbers. Annuaire Univ. Sofia Fac. Math. Inform. 81 (1987), 153-162. MR 1291893
Partner of
EuDML logo