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Delannoy and tetrahedral numbers

Joachim Schröder

Abstract. We establish an identity between Delannoy numbers and tetrahedral numbers
of arbitrary dimension.
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The numbers D(n, m) of Henri Auguste Delannoy (1833–1915), [4], count
the lattice paths in Z × Z from (0, 0) to (m, n) with set of permitted steps
{(0, 1), (1, 0), (1, 1)}, i.e. north, east and north-east steps. They can conveniently
be described as minimal king walks from the bottom left corner to the upper right
corner on a m × n chess board (see Figure 3 for m = n = 2). It is known since
the times of Delannoy that

(1) D(n, m) =

m
∑

ν=0

(

m

ν

)(
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m

)

=

min{m,n}
∑

ν=0

2ν
(

m

ν

)(

n

ν

)

.

Tetrahedral numbers have, by definition, a simple geometric meaning, too. In
two dimensions they are the number of lattice points in an equilateral triangle,
correspondingly in three dimension they count the number of points in a regular
tetrahedron, see Figure 1. Generalization to higher dimensions is apparent and
involves the d-dimensional simplex (hypertetrahedron). Their determination is
even easier than the determination of Delannoy numbers, because they are built
up inductively. If Td(n) denotes the number of points with integer coordinates in
the d-dimensional hypertetrahedron of edge length1 n − 1, then T1(n) = n and
Td+1(n) =

∑n
v=1 Td(v). It happens that T1(n) =

(

n
1

)

and the triangular number
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1The edge length is the number of intervals created by n equidistant points, where start and

end point of the edge carries a point. It is naturally 1 less than the number of points.
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Figure 1: An example of the simplest 3-dimensional polytop, a dis-
crete tetrahedron or 3-simplex, of edge length 3.

T2(n) equals
n(n+1)
2 =

(n+1
2

)

. The discrete antiderivative of
(x
v

)

is
( x
v+1

)

, i.e.

∆
(

x
v+1

)

=
(

x
v

)

. Hence discrete integration can be used to show

(2) Td(n) =

(

n+ d − 1

d

)

.

In order to establish a link between Delannoy and tetrahedral numbers, we
will need a result about crystal balls, which was first discovered by Vassilev &
Atanassov [10].

Definition 1. (1) Let x = (x1, x2, ..., xd) ∈ Z
d, d ∈ N. The L1-norm |x|1 of x

is defined by |x|1 :=
∑

|xi|.

(2) Sd(n) := {x | x ∈ Z
d and |x|1 = n} is called d − 1-dimensional crystal

sphere of radius n. We set Sd(n) := | Sd(n)|. The sequence (Sd(n))n∈N

is called coordination-sequence (or -numbers). The union
⋃n

ν=0 Sd(ν) =:
Gd(n) is called d-dimensional crystal ball of radius n, see Figure 2. We
put | Gd(n)| =: Gd(n) =

∑n
ν=0 Sd(ν).

(3) If f : D → Z, D ⊆ Z, is a function then the (forward) difference operator
∆ is defined by ∆f(n) = f(n+ 1)− f(n). ∆m is defined by ∆1 = ∆ and
∆m = ∆ ◦∆m−1.

Theorem 2 ([10], [8]).

D(n, m) =

m
∑

µ=0

Sn(µ) = Gn(m),

see Figure 3.

Proof: We will follow the proof in Schröder [8], because it is considerably shorter.
The GF of the Delannoy numbers D(n, m) is known to be (cf. [9])

∑

n,m≥0

D(n, m)xnym =
1

1− x − y − xy
.
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Figure 2: The shape of a crystal ball in 3 dimensions, also called
regular octahedron (the discrete points are not drawn).

We have

1

1− x − y − xy
=

1

1− y

1

1− x
1+y
1−y

=
1

1− y

∑

n≥0

(

1 + y

1− y

)n

xn

=
1

1− y

∑

n,m≥0

Sn(m)y
mxn =

∑

n,m≥0

m
∑

µ=0

Sn(µ)y
mxn =

∑

n,m≥0

Gn(m)y
mxn.

Indeed, Conway & Sloane show in [3, p. 9, Equation (16)], that

Sd(n) =
d

∑

k=0

(

d

k

)(

n+ d − k − 1

d − 1

)

(=
d

∑

k=0

(

d

k

)(

n+ k − 1

d − 1

)

)

is the coordination number of distance n in Z
d and their generating function is

∑

n≥0

Sd(n)y
n =

(

1 + y

1− y

)d

.
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Figure 3: D(2, 2) = 13 and G2(2) = 13.

See also [6, p. 4, Aufg. 29]. �

We are ready to state and prove the main theorem. The idea is to decompose a
crystal ball into a number of hypertetrahedra. For instance, if we look at Figure 2,
we can see that the top pyramid consists of 4 tetrahedra of type as depicted in
Figure 1. Overall G3(n) is composed out of 8 tetrahedra. Unfortunately these
tetrahedra overlap. They have some faces and edges in common. Therefore, to get
the correct number of points, we have to apply the principle of inclusion-exclusion.
For instance, if we stay with Figure 1 and Figure 2, the first approximation to
G3(3) is obtained by taking 8 times the number of lattice points in Figure 1.
Then we have to subtract 12 times the number of points of a tetrahedral face,
because 12 faces are common to 2 tetrahedra, add 6 times the number of points
of a tetrahedral edge, because 6 edges in the coordinate axes’ are contained in 4
tetrahedra and finally subtract 1 for the point in the center, which is common to all

tetrahedra. We have shownD(3, 4−1) = G3(4−1) = 8
(4+2
3

)

−12
(4+1
2

)

+6
(4
1

)

−1 =
8× 20− 12× 10 + 6× 4− 1 = 63 and more generally

D(3, n − 1) = G3(n − 1) = 8

(

n+ 2

3

)

− 12

(

n+ 1

2

)

+ 6

(

n

1

)

− 1,

see Equation 2.

Theorem 3.

D(n, m) =

m
∑

v=0

(−1)m−v2v
(

m

v

)

Tv(n+ 1) =

m
∑

v=0

(−1)m−v2v
(

m

v

)(

n+ v

v

)

(3)

D(n, m) = ∆m 2x
(

n+ x

x

)∣

∣

∣

∣

x=0
= ∆m 2xTx(n+ 1)

∣

∣

∣

∣

x=0

(4)

2mTm(n+ 1) = 2
m

(

n+m

m

)

=

m
∑

v=0

(

m

v

)

D(n, v)(5)

2m
(

n

m

)

=
m

∑

v=0

(−1)m−v

(

m

v

)

D(n, v) = ∆mD(n, x)

∣

∣

∣

∣

∣

x=0

(6)



Delannoy and tetrahedral numbers 393

Proof: Equations 3, 4 and 5 are equivalent via binomial inversion and difference
formula. Binomial inversion again shows the (known) equivalence of Equation 1
and Equation 6, which was added for completeness. In order to prove Equation 3,
we have to determine the number of simplices with a given, common sub-simplex.
The easiest method might be to use a linear scheme in which we record the
quadrant of the point and the varying coordinates, as in Schröder [7]. Given a
d-dimensional crystal ball Gd, let e = e1e2e3 . . . ed be a finite sequence, where
ei ∈ {+, 0,−}. To every point p = (x1, x2, . . . , xd) ∈ Gd we assign a sequence e

by

ei :=











+ if xi > 0

− if xi < 0

0 if xi = 0

Vice versa, every e defines a sub-simplex of Gd, modulo size. An entry 0 in e has
a special meaning, because it indicates a set of points which are common to more
than 1 sub-simplex. For instance, in 3 dimensions, e = + − + stands for the 3-
simplex which lies in the octant with positive x- and z- coordinates and negative
y- coordinate. e = +0+ describes the sub-simplex (triangle) with positive x-
and z- coordinates and vanishing y- coordinate. It is the common face of + + +
and + − +, see Figure 2. In d dimensions, the first approximation to Gd(n) is

2dTd(n + 1), because there are 2
d different +, − sequences of length d, i.e. Gd

is composed out of 2d d-simplices. We have to subtract points in the common

faces to get the second approximation. There are
(

d
1

)

possibilities to insert 0 in

a sequence of length d and 2d−1 possibilities to fill the remaining places with +
and −. Each case accounts for Td−1(n + 1) points. In the next step we have to

add 2d−2
(d
2

)

Td−2(n+ 1) points, etc. Eventually we arrive at

D(n, d) =

d
∑

v=0

(−1)v2d−v

(

d

v

)

Td−v(n+ 1) =

d
∑

v=0

(−1)v2d−v

(

d

v

)(

n+ d − v

d − v

)

.

Substitution d − v → v produces Equation 3. �
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