Previous |  Up |  Next

Article

Keywords:
Heyting algebras; dualities and gaps; Heyting categories
Summary:
We present an algebraic treatment of the correspondence of gaps and dualities in partial ordered classes induced by the morphism structures of certain categories which we call Heyting (such are for instance all cartesian closed categories, but there are other important examples). This allows to extend the results of [14] to a wide range of more general structures. Also, we introduce a notion of combined dualities and discuss the relation of their structure to that of the plain ones.
References:
[1] Adámek J., Herrlich H., Strecker G.: Abstract and Concrete Categories: The Joy of Cats. Pure and Applied Mathematics, John Wiley & Sons, New York, 1990. MR 1051419
[2] Davey B.A., Priestley H.A.: Introduction to Lattices and Order. Second Edition, Cambridge University Press, Cambridge, 2001. MR 1902334 | Zbl 1002.06001
[3] Duffus D., Sauer N.: Lattices arising in categorial investigations of Hedetniemi's conjecture. Discrete Math. 152 (1996), 125-139. MR 1388636 | Zbl 0853.06006
[4] Edmonds J.: Paths, trees and flowers. Canad. J. Math. 17 (1965), 449-467. MR 0177907 | Zbl 0132.20903
[5] Hell P., Nešetřil J.: Graphs and Homomorphisms. Oxford University Press, Oxford, 2004. MR 2089014
[6] Hochstättler W., Nešetřil J.: Linear programming duality and morphisms. Comment. Math. Univ. Carolin. 40 3 (1999), 577-592. MR 1732478
[7] Hochstättler W., Nešetřil J.: A note on maxflow-mincut and homomorphic equivalence of matroids. J. Algebraic Combin. 12 3 (2000), 295-300. MR 1803237
[8] Johnstone P.T.: Topos Theory. Academic Press, London-New York, 1977. MR 0470019 | Zbl 1071.18002
[9] Komárek P.: Some good characterizations for directed graphs. Čas. Pěst. Mat. 109 (1984), 348-354. MR 0774277
[10] Mac Lane S.: Categories for the Working Mathematician. Springer, New York, 1971. Zbl 0906.18001
[11] Nešetřil J.: Aspects of structural combinatorics (Graph homomorphisms and their use). Taiwanese J. Math. 3 4 (1999), 381-423. MR 1730980 | Zbl 0939.05001
[12] Nešetřil J., Pultr A.: On classes of relations and graphs determined by subobjects and factorobjects. Discrete Math. 22 (1978), 287-300. MR 0522724
[13] Nešetřil J., Tardif C.: Density via duality. Theoret. Comput. Sci. 287 2 (2002), 585-595. MR 1930237 | Zbl 1058.05062
[14] Nešetřil J., Tardif C.: Duality theorems for finite structures (characterising gaps and dualities). J. Combin. Theory Ser. B 80 1 (2000), 80-97. MR 1778201
[15] Welzl E.: Color-families are dense. Theoret. Comput. Sci. 17 (1982), 29-41. MR 0644791 | Zbl 0482.68063
Partner of
EuDML logo