Previous |  Up |  Next

Article

Keywords:
paratopological group; symmetrizable spaces; regular $G_{\delta}$-diagonal; weak bases; Arens space
Summary:
In this paper, it is proved that a first-countable paratopological group has a regular $G_{\delta}$-diagonal, which gives an affirmative answer to Arhangel'skii and Burke's question [{\it Spaces with a regular $G_{\delta}$-diagonal\/}, Topology Appl. {\bf 153} (2006), 1917--1929]. If $G$ is a symmetrizable paratopological group, then $G$ is a developable space. We also discuss copies of $S_\omega$ and of $S_2$ in paratopological groups and generalize some Nyikos [{\it Metrizability and the Fréchet-Urysohn property in topological groups\/}, Proc. Amer. Math. Soc. {\bf 83} (1981), no. 4, 793--801] and Svetlichnyi [{\it Intersection of topologies and metrizability in topological groups\/}, Vestnik Moskov. Univ. Ser. I Mat. Mekh. {\bf 4} (1989), 79--81] results.
References:
[1] Arhangel'skiĭ A.V.: Mappings and spaces. Russian Math. Surveys 21 (1966), 115-162. MR 0227950
[2] Arhangel'skii A.V.: The frequency spectrum of a topological space and the product operation. Trans. Moscow Math. Soc. 2 (1981), 163-200.
[3] Arhangel'skii A.V., Burke D.: Spaces with a regular $G_{\delta}$-diagonal. Topology Appl. 153 (2006), 1917-1929. MR 2227036 | Zbl 1117.54004
[4] Arhangel'skii A.V., Reznichenko E.A.: Paratopological and semitopological groups versus topological groups. Topology Appl. 151 (2005), 107-119. MR 2139745 | Zbl 1077.54023
[5] Burke D., Engelking R., Lutzer D.: Hereditarily closure-preserving collections and metrization. Proc. Amer. Math. Soc. 51 (1975), 483-488. MR 0370519 | Zbl 0307.54030
[6] Engelking R.: General Topology. PWN, Warszawa, 1977. MR 0500780 | Zbl 0684.54001
[7] Foged L.: A characterization of closed images of metric spaces. Proc. Amer. Math. Soc. 95 (1985), 487-490. MR 0806093 | Zbl 0592.54027
[8] Gruenhage G.: Generalized metric spaces. in: K. Kunen, J.E. Vaughan eds., Handbook of Set-theoretic Topology, North-Holland, 1984, pp.423-501. MR 0776629 | Zbl 0794.54034
[9] Gruenhage G., Michael E., Tanaka Y.: Spaces determined by point-countable covers. Pacific J. Math. 113 (1984), 303-332. MR 0749538 | Zbl 0561.54016
[10] Liu C.: On weakly bisequential spaces. Comment Math. Univ. Carolin. 41 3 (2000), 611-617. MR 1795090 | Zbl 1038.54004
[11] Liu C.: Notes on g-metrizable spaces. Topology Proc. 29 1 (2005), 207-215. MR 2182930 | Zbl 1085.54019
[12] Liu C.: Nagata-Smirnov revisited: spaces with $\sigma$-wHCP bases. Topology Proc. 29 2 (2005), 559-565. MR 2244489 | Zbl 1123.54009
[13] Michael E.: A quintuple quotient quest. General Topology Appl. 2 (1972), 91-138. MR 0309045 | Zbl 0238.54009
[14] Nogura T., Shakhmatov D., Tanaka Y.: $\alpha_4$-property versus $A$-property in topological spaces and groups. Studia Sci. Math. Hungar. 33 (1997), 351-362. MR 1601628 | Zbl 0902.22001
[15] Nyikos P.: Metrizability and the Fréchet-Urysohn property in topological groups. Proc. Amer. Math. Soc. 83 4 (1981), 793-801. MR 0630057 | Zbl 0474.22001
[16] O'Meara P.: On paracompactness in function spaces with the compact open topology. Proc. Amer. Math. Soc. 29 (1971), 183-189. MR 0276919 | Zbl 0214.21105
[17] Sirois-Dumais R.: Quasi- and weakly-quasi-first-countable space. Topology Appl. 11 (1980), 223-230. MR 0572376
[18] Svetlichnyi S.A.: Intersection of topologies and metrizability in topological groups. Vestnik Moskov. Univ. Ser I Mat. Mekh. 4 (1989), 79-81. MR 1029763
[19] Reznichenko E.A.: Extensions of functions defined on products of pseudocompact spaces and continuity of the inverse in pseudocompact groups. Topology Appl. 59 (1994), 233-244. MR 1299719
[20] Tanaka Y.: Metrizability of certain quotient spaces. Fund. Math. 119 (1983), 157-168. MR 0731817
[21] Zenor P.: On spaces with regular $G_{\delta}$-diagonals. Pacific J. Math. 40 (1972), 759-763. MR 0307195
Partner of
EuDML logo