[1] Benyamini Y., Sternfeld Y.:
Spheres in infinite-dimensional normed spaces are Lipschitz contractible. Proc. Amer. Math. Soc. 88:3 (1983), 439-445.
MR 0699410 |
Zbl 0518.46010
[2] Brown A.B., Cairns S.:
Strengthening of Sperner's lemma applied to homology theory. Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 113-114.
MR 0146831 |
Zbl 0097.38702
[5] Erdös P., Galvin F., Hajnal A.:
On set-systems having large chromatic number and not containing prescribed subsystems. in: Infinite and Finite Sets (A. Hajnal, R. Rado, V.T. Sós, Eds.), North-Holland, Amsterdam, 1975, pp.425-513.
MR 0398876
[6] Fan Ky:
A generalization of Tucker's combinatorial lemma with topological applications. Ann. of Math. (2) 56 (1952), 431-437.
MR 0051506 |
Zbl 0047.42004
[7] Fried J.: Personal communication.
[8] Goebel K.:
On the minimal displacement of points under Lipschitzian mappings. Pacific J. Math. 45 (1973), 151-163.
MR 0328708 |
Zbl 0265.47046
[9] Isbell J.R.:
Uniform Spaces. Mathematical Surveys 12, Amer. Math. Soc., Providence, Rhode Island, 1964.
MR 0170323 |
Zbl 0124.15601
[10] Knaster B., Kuratowski C., Mazurkiewicz S.: Ein Beweis des Fixpunksatzes für $n$-dimensionale Simplexe. Fund. Math. 14 (1929), 132-137.
[11] Kryński S.:
Remarks on matroids and Sperner's lemma. European J. Combin. 11 (1990), 485-488.
MR 1075536 |
Zbl 0727.05015
[12] Kuhn H.W.:
Some combinatorial lemmas in topology. IBM J. Res. Develop. 4 (1960), 508-524.
MR 0124038 |
Zbl 0109.15603
[15] Mani P.:
Zwei kombinatorisch-geometrische Sätze vom Typus Sperner-Tucker-Ky Fan. Monatsh. Math. 71 (1967), 427-435.
MR 0227859 |
Zbl 0173.26202
[16] Pelant J.:
Combinatorial properties of uniformities. General Topology and its Relations to Modern Analysis and Algebra IV, Lecture Notes in Mathematics 609, Springer, Berlin-Heidelberg-New York, 1977, pp.154-165.
MR 0500846 |
Zbl 0371.54054
[17] Pelant J.:
Embeddings into $c_0$. Topology Appl. 57 (1994), 2-3 259-269.
MR 1278027
[18] Pelant J., Rödl V.:
On coverings of infinite-dimensional metric spaces. Topological, algebraical and combinatorial structures. Frolík's memorial volume. Discrete Math. 108 (1992), 1-3 75-81.
MR 1189831
[19] Rödl V.:
Small spaces with large point-character. European J. Combin. 8 (1987), 55-58.
MR 0884064
[20] Smith J.C.:
Characterizations of metric-dependent dimension functions. Proc. Amer. Math. Soc. 19:6 (1968), 1264-1269.
MR 0232365 |
Zbl 0169.25103
[21] Sperner E.: Neuer Beweis für die Invarianz der Dimensionzahl und des Gebietes. Abh. Math. Sem. Hamburg 6 (1928), 265-272.
[22] Sperner E.:
Kombinatorik bewerter Komplexe. Abh. Math. Sem. Univ. Hamburg 39 (1973), 21-43.
MR 0332498
[23] Stone A.H.:
Universal spaces for some metrizable uniformities. Quart. J. Math. Oxford, Ser. (2) 11 (1960), 105-115.
MR 0116308 |
Zbl 0096.37402
[24] Ščepin E.V.:
On a problem of Isbell. Soviet Math. Dokl. 16 (1975), 685-687.
MR 0380743
[25] Tucker A.W.:
Some topological properties of disk and sphere. in: Proc. First Canadian Math. Congress, Montreal, Canada, 1945, pp.285-309.
MR 0020254 |
Zbl 0061.40305
[26] Vidossich G.:
Uniform spaces of countable type. Proc. Amer. Math. Soc. 25:3 (1970), 551-553.
MR 0261546 |
Zbl 0181.50903