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An infinitary version of Sperner’s Lemma

Aarno Hohti

Abstract. We prove an extension of the well-known combinatorial-topological lemma of
E. Sperner to the case of infinite-dimensional cubes. It is obtained as a corollary to an
infinitary extension of the Lebesgue Covering Dimension Theorem.

Keywords: simplex, colouring, covering dimension, point-finite, fixed point, algebraic
topology

Classification: Primary 57N20; Secondary 55M20, 54F45

1. Introduction

The well-known lemma of E. Sperner on colourings of vertices of n-simplices
is one of the cornerstones of simplicial algebraic topology, directly related to
the invariance of homology groups under simplicial subdivisions. It was used
by Sperner [21] to give a short proof that the topological dimension of an n-cell
equals n. In fact, it can be considered as a combinatorial (discrete) version of
Brouwer’s Fixed Point Theorem, obtained from Sperner’s Lemma by a simple ar-
gument using the compactness of the cubes In, as shown in [10]. There are several
versions and extensions of this lemma ([2], [6], [12], [15], [22], [25]) and there are
versions for matroids ([11], [13], [14]). The well-known extension of Brouwer’s
Fixed Point Theorem to infinite-dimensional (Banach) spaces, Schauder’s Fixed
Point Theorem, is stated for compact convex subsets and is based on the finite-
dimensional theorem. Indeed, there is no “truly” infinitary Sperner’s Lemma in
the literature, and this is connected with the facts that Brouwer’s Fixed Point
Theorem fails in general (see e.g. [1]) and the ordinary homology groups Hn(U, Z)
vanish for unit spheres U of infinite-dimensional Banach spaces. However, we give
here a natural extension of Sperner’s Lemma to colourings of cubical triangula-
tions of infinite-dimensional cubes. The problem can be reduced to a combinato-
rial problem about colourings ϕ : [k]ω → {0, 1}ω (where k is a positive integer and
[k] denotes the set {0, . . . , k}) satisfying the Sperner condition that ϕ(σ) 6= ϕ(σ′)
whenever the distance of σ and σ′ in [k]ω is maximal. For such colourings ϕ
we prove that there is σ ∈ [k]ω such that ϕ(Kσ) is infinite, where Kσ is the
“cube” corresponding to σ. We also indicate why this result is the best possi-
ble. The results are stated in this paper for the unit cube U∞ of the Banach
space ℓ∞; we consider U∞ as the ω-dimensional (combinatorial!) analogue of the
finite-dimensional cubes In.
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The Lebesgue Covering Dimension Theorem (cf., e.g., [4]) says that open cov-
ers of In by sufficiently small sets have order at least n+1. This theorem cannot
be extended to open covers of the cube U∞, since by paracompactness every
open cover has a point-finite refinement. However, this theorem can be extended
if only uniform covers are considered, replacing the lack of compactness of U∞

by the condition of uniformity. In this paper, this extension is proved first and
then used to obtain Sperner’s Lemma as a direct corollary. The sets [k]ω corre-
spond to regular or uniform cubical subdivisions of U∞, and, by the same token,
Sperner’s Lemma is not valid for non-uniform subdivisions. The general question
(Stone [23], Isbell [9]) whether every uniform cover of a Banach space has a point-
finite uniform refinement was answered in the negative independently by Pelant
[16] and Ščepin [24]. It was handled in a different way later by Rödl [19], who by
using results of [5] produced a counter-example of minimal cardinality.

2. Preliminaries

In this section we develop the necessary notation and background for our treat-
ment of the infinitary covering dimension and Sperner’s Lemma. Let us first state
the classical version of this result. In this paper the symbol [n] denotes the subset
{0, . . . , n} of integers. Let ∆ be an n-simplex, and let K = {∆1, . . . ,∆m} be a

simplicial subdivision of ∆. Let ϕ : K(0) → [n] be a mapping (“colouring”) of the
vertices of the simplices in K. If ϕ satisfies the condition

(Sperner Condition): ϕ(∆(0)) = [n] (bijectivity) and if v ∈ K(0) lies in an

r-face F of ∆ (where 0 ≤ r < n), then ϕ(v) ∈ ϕ(F (0)),

then ϕ is called a Sperner colouring. (In some articles the notion “proper la-
belling” is used.) The classical Sperner’s Lemma asserts that there is a simplex

∆i ∈ K such that ϕ(∆
(0)
i ) = [n]:

Theorem 2.1 (Sperner’s Lemma [21]). If K is a simplicial subdivision of an

n-simplex ∆ and ϕ : K(0) → [n] is a Sperner colouring, then there is a simplex
∆i of K such that the vertices of ∆i are coloured by ϕ with n+ 1 colours.

In the sequel we loosely call colourings satisfying a suitable version of Sperner
Condition Sperner colourings . We notice here that in this finite-dimensional case,
Sperner Condition can be replaced by the condition that the cover C = {ϕ−1(k) :

k ∈ [n]} determined by the colours of the vertices v ∈ ∆(0) is a “bounded”

cover of K(0) in the following sense. The complex K becomes a uniform complex
in the sense of Isbell [9] if for p, q ∈ |K| (here |K| denotes the underlying set
of K) we let the distance d(p, q) be the maximum difference of their barycentric
coordinates. Then C is called bounded if diamd(ϕ

−1(k)) < 1 for all k ∈ [n].

Notice that boundedness implies ϕ ↾ ∆(0) is injective: if v, w ∈ ∆(0) and v 6= w,

then d(v, w) = 1 and hence ϕ(v) 6= ϕ(w). Thus, ϕ ↾ ∆(0) is bijective.
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It is natural to consider cubes In = [0, 1]n instead of the simplices ∆. For
a “cubical” version of Sperner’s Lemma, see [12]. In the infinite-dimensional
situation, the cubical form becomes a natural one. Let K be the cubical complex
consisting of the single cube In. (We consider cubical complexes given by a
set of maximal cubes such that any two intersecting cubes meet in a common

cubical face.) Then K(0) corresponds to the set {0, 1}n. A regular (or uniform)
subdivision of In of sidelength 1/m (m ≥ 1) is the set consisting of all products
(called cubes of the subdivision)

Kσ = [i1/m, (i1 + 1)/m]× · · · × [in/m, (in + 1)/m],

where i1, . . . , in ∈ [m − 1] and where the n-tuple σ = (i1, . . . , in) is called the
index of the associated cube Kσ. For a regular subdivision L of In, the vertex

set L(0) corresponds to [m]n for some m; the correspondence is simply given by

the map f : [m]n → L(0) for which

f(i1, . . . , in) = (i1/m, . . . , in/m).

Thus, the colourings of L(0) satisfying Sperner Condition lead to colourings ϕ :
[m]n → {0, 1}n with the following property: if σ, σ′ ∈ [m]n and σ(i) = 0, σ′(i) =
m for some i ∈ [n], then ϕ(σ) 6= ϕ(σ′). The natural way to extend these colourings
to the infinitary situation is to consider colourings ϕ : [m]ω → {0, 1}ω, where
m ∈ ω. As above, the sets [m]ω correspond to regular cubical subdivisions of the
cube [0, 1]ω, denoted here by U∞. The topology of U∞ is given by the ℓ∞-norm
defined by ‖σ − τ‖ℓ∞ = sup{|σ(i)− τ(i)| : i ∈ ω}. We denote the distance of two
elements σ, τ ∈ [m]ω simply by ‖σ − τ‖.

3. Regular subdivisions

The classical Sperner’s Lemma was extended to colourings of cubical triangu-
lations by Kuhn in [12]. It is easy to show by using either the classical result that
dim(In) = n or the results of Kuhn that for any colouring ϕ : [m]n → {0, 1}n

satisfying Sperner Condition there is σ ∈ [m]n such that ϕ(Kσ) contains at least
n+1 colours. (The result proved by Kuhn is stronger, see [12, p. 521].) However,
this result is true for any (finite) cubical triangulation of In which is related to
the fact that every open cover of In is a uniform cover. (Likewise every cubical
triangulation of In with rational vertices has a subdivision which is regular in the
above sense.)
On the other hand, regular subdivisions are necessary when we deal with

infinite-dimensional cubes. Indeed, we will show that the straightforward ex-
tension of Sperner’s Lemma to arbitrary cubical subdivisions of U∞ is false. Let
V be an open cover of U∞ such that diam(V ) < 1 for each V ∈ V . Since U∞ is
paracompact, we can assume that V is locally finite; let W be an open refinement
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of V such that each W ∈ W meets only finitely many members of V . We can find
a cubical subdivision K of U∞ such that K ≺ W ; i.e., for each cube K ∈ K there
is W ∈ W with K ⊂ W . Indeed, let K1 be the regular subdivision of U∞ into
cubes of sidelength 1/2. Let K′

1 be the subset of all K ∈ K1 such that K ⊂ W
for some W ∈ W , and let K′

2 be the cubical complex obtained by subdividing
each K ∈ K1 \ K

′

1 into cubes of sidelength 1/4. Let K2 denote the subset of all
K ∈ K2 such that K ⊂ W for some W ∈ W , and define K3 as the subdivision of
K2 \K

′

2 into cubes of sidelength 1/8. Continue in this fashion ad infinitum. Then
let K∗ =

⋃
{K′

n : n ∈ ω}. The set K∗ is naturally partially ordered with respect
to the relation of inclusion. With this partial order, K∗ is a tree. Furthermore,
this tree is well-founded, i.e. each maximal linearly ordered subset (that is, a de-
creasing sequence of cubes) is finite. To see this, suppose that K1 ⊃ K2 ⊃ . . . is
a decreasing sequence of cubes. Since diam(Kn) ≤ 2

−n and since U∞ is complete
as a metric space, there is p ∈

⋂
{Kn : n ∈ ω}. Let p ∈ Wp, Wp ∈ W . Then

Kn ⊂ Wp already for some n, contradicting the assumption that Kn+1 ∈ K∗.
Thus, K∗ is well-founded. Consequently the minimal elements of K∗ form the

desired complex K. We define a colouring ϕ : K(0) → {0, 1}ω as follows. It is

easy to see that the cardinality of the set K is 2ω. Choose for each p ∈ K(0) some
Vp ∈ V such that p ∈ Vp, and let V ′ = {Vp : p ∈ K(0)}. Then the cardinality of
V ′ is 2ω and there is a bijection φ : V ′ → {0, 1}ω. Define ϕ(p) = φ(Vp). Then ϕ
satisfies Sperner Condition since diam(V ) < 1 for each V ∈ V ′. However, for each
cube K ∈ K the set ϕ(K) of colours is finite, since K meets only finitely many
members of V .

The above example also shows that the straightforward extension of Lebesgue’s
Covering Dimension Theorem to the infinite-dimensional setting is false: there is
no x ∈ U∞ such that Vx = {V ∈ V : x ∈ V } is infinite. Anyhow, we prove that
this extension is true for uniform covers of U∞. We note here that if unit cubes
of other Banach spaces, e.g. c0(ω) are considered, then the infinitary Sperner’s
Lemma does not hold even for regular cubical subdivisions. Indeed, c0(ω) is
separable and hence every uniform cover of c0(ω) has a uniformly locally finite
uniform refinement ([20], [26])*. Thus, by repeating the construction in the above
example, we can find arbitrarily fine regular cubical subdivisions K of the unit
cube of c0(ω) with colourings ϕ : K

(0) → ω satisfying Sperner Condition such that

ϕ(K(0)) is finite for each K ∈ K. Combinatorially these subdivisions correspond
to the sets [m]<ω of all sequences σ ∈ [m]ω satisfying σ(i) = 0 for almost all
i ∈ ω. It is, however, possible to give modified versions of Sperner’s Lemma even
in these cases; we will return to this topic in Section 7.

∗It is remarkable that the basic result that every countable uniform cover has a point-finite
uniform refinement was not yet contained in [9]. As pointed out in [20], it was essentially
contained in the proof of 2.2 in R.E. Hodel: Note on metric-dependent dimension functions,
Fund. Math. 61 (1967), p. 84.
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4. Definitions

In this section we give definitions, in addition to those given in the previous
section, necessary for the proof of the main result. Let n > 1 be fixed. The sum
σ+ τ of two elements σ, τ ∈ [n]ω is always understood relative to the interval [n],
i.e., (σ + τ)(i) = min(n, σ(i) + τ(i)) for all i ∈ N. We define for each σ ∈ [n]ω

the “positive cube” Kσ with index σ as the set of all σ + τ , where τ ∈ {0, 1}ω.
We also define a combinatorial generalization of metric balls. Let σ ∈ [n]ω , let
A ⊂ ω and let k ∈ [n]. Then B(σ, A, k) denotes the set of all τ ∈ [n]ω such that
|σ(i) − τ(i)| ≤ k for i ∈ A and σ(i) = τ(i) for i ∈ ω \ A. In the proof of 5.1 we
primarily consider those subsets A of ω for which both A and ω \ A are infinite.
For any subset S ⊂ ω let A(S) denote the collection of all A ⊂ ω such that S ⊂ A
and |ω \ A| = |A \ S| = ω. We define

B̂(σ, A, L) =
⋃

{B(σ, A′ \ A, L) : A′ ∈ A(A)}.

Suppose that G is a covering of [n]ω . We define here a number that can be called
a local relative Lebesgue number of the cover G. Given σ ∈ [n]ω and A ⊂ ω, we
define

ℓ(σ, A,G) = max{k ∈ [n] : ∃G ∈ G(B̂(σ, A, k) ⊂ G)}.

We observe that A1 ⊂ A2 implies ℓ(σ, A1,G) ≤ ℓ(σ, A2,G). For each σ ∈ [n]ω

there is A ∈ A(∅) such that ℓ(σ, A, ϕ) = ℓ(σ, A′, ϕ) for all A′ ∈ A(A). We

also notice that if σ′ ∈ B̂(σ, A, k), say σ′ ∈ B(σ, A′ \ A, k), then B̂(σ′, A′, k) ⊂

B̂(σ, A, k), which implies ℓ(σ′, A′,G) ≥ ℓ(σ, A,G).
To facilitate the proof of our first result, we define here a property M that

depends on 5 parameters. (Unfortunately, simple arguments such as that of [3]
do not seem applicable in this infinitary situation.) Let S be the set of all σ ∈ [n]ω

such that σ(i) = 0 for infinitely many i ∈ ω. Let σ ∈ S, let A ∈ A(∅), let k ∈ ω,

let G be a covering of [n]ω , and let G ∈ G. ThenM(σ, A, k, G,G) iff B̂(σ, A, k) ⊂ G

but B̂(σ′, A′, k+1) 6⊂ G′ for all G′ ∈ G and for all extensions σ′ of σ in B̂(σ, A, k),
where σ′ ∈ S and A′ ∈ A(A). (We call σ′ an extension of σ if σ(i) 6= 0 implies
σ′(i) = σ(i); in other words, if the support E of σ is contained in that of σ′ and
these functions agree on E.)
Let A ⊂ ω and let k ∈ ω. An (A, k)-function is a function χ : ω → [−k, k] such

that χ(i) = 0 for i ∈ ω \ A. Thus, every element of B(σ, A, k) can be represented
in the form σ + χ, where χ is an (A, k)-function.

5. Infinitary Covering Dimension

As will be seen in the remarks following the proof of 5.1 (Remark 5.4), the
infinitary Sperner’s Lemma does not yield a direct extension of Brouwer’s Fixed
Point Theorem. However, it is equivalent to an infinitary extension of Lebesgue’s
Covering Dimension Theorem. Here one has to consider uniform covers instead of
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open covers, because the cubes U∞ are not compact. A uniform space µX (see [9]
for terminology) is called point-finite if every uniform cover U ∈ µ has a uniform
refinement V such that Vx = {V ∈ V : x ∈ V } is finite for each x ∈ X . Is every
uniform (e.g., metric) space point-finite? This question of A.H. Stone [23] and
J. Isbell [9] was answered in the negative by E.V. Ščepin [24] and J. Pelant [16].
Ščepin proved that ℓ∞(iω) is not point-finite, where the beth number iω is

defined inductively by i0 = ω, in+1 = 2
in and iω = sup{in : n ∈ ω}. Pelant

proved that even ℓ∞(i1) is not point-finite, by using his combinatorial technique
of cornets. By using graph-theoretic results of Erdös, Galvin and Hajnal [5],
V. Rödl [19] has given a simple proof showing that there is a non-point-finite
space of cardinality ω1. By using 5.1, we can easily prove that ℓ∞(ω) is not
point-finite, by showing that the subspace U∞ satisfies an infinitary version of
Lebesgue’s Covering Dimension Theorem. This result has also been announced
by Pelant.

Theorem 5.1. Let U be a uniform cover of U∞ such that diam(U) < 1 for each
U ∈ U . Then there is x ∈ U∞ such that Ux is infinite.

Proof: To facilitate the argument, we move from the covering U of U∞ to a
covering G of [n]ω for a suitable n. Let n ≥ 2 be such that the metric balls
B(x, 2/n) of U∞ refine U . Then for each U ∈ U let GU ⊂ [n]ω consist of all σ
such that (σ(i)/n) ∈ U , and define G = {GU : U ∈ U}. We shall construct a
sequence of 4-tuples 〈σk , Ak, Lk, Uk〉, where σk ∈ [n]ω , Ak ∈ A(Ak−1), Lk ∈ [n],
Uk ∈ U , such that M(σk, Ak, Lk, GUk

,G) (as defined above) holds for each k.
Let A0 = ∅, let S be as above (i.e., the set of all σ ∈ [n]ω such that σ(i) = 0

for infinitely many i ∈ ω) and let

L1 = max{ℓ(σ, A,G) : σ ∈ S, A ∈ A(A0)};

say L1 = ℓ(σ1, A1,G), and let σ1 ∈ S and U1 ∈ U be such that B̂(σ1, A1, L1) ⊂
GU1 . Notice in particular that L1 < n; this follows from the assumption that
diam(U) < 1 for each U ∈ U . We can assume that σ1(i) = 0 for all i ∈ ω \ A1
and that there is an element n1 ∈ A1 such that σ1(n1) = 0.

It is clear that B̂(σ, A, L1 + 1) 6⊂ GU for all σ ∈ S, A ∈ A(A1) and U ∈ U .
It follows that M(σ1, A1, L1, GU1 ,G) holds. For the inductive hypothesis, assume
that we have a sequence of 4-tuples 〈σk , Ak, Lk, Uk〉, 1 ≤ k ≤ m, with the following
properties:

1) M(σk, Ak, Lk, GUk
,G) holds for each k ∈ {1, . . . , m};

2) L1 ≥ . . . ≥ Lm;

3) Ak+1 ∈ A(Ak) for each k ∈ {0, . . . , m − 1};

4) there are fixed elements ni ∈ Ai such that σi(ni) = 0, where we assume that
ni ∈ Ai \ Ai−1 for i > 0 and that |Ai \ Ai−1| > 1;
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5) if i ≤ k ≤ m, then σk ↾ Ai = σi ↾ Ai;

6) if i ∈ ω \ Am, then σk(i) = 0 for all k ∈ {1, . . . , m};

7) B̂(σi+1, Ai+1, 1) 6⊂ GUi
for all i ∈ {1, . . . , m − 1}.

We shall construct a 4-tuple 〈σm+1, Am+1, Lm+1, Um+1〉 such that the above
conditions 1) – 7) hold withm replaced bym+1. Notice that for each A ∈ A(Am)
and each (A \Am, Lm)-function χ : ω → [−Lm, Lm], one has σm+χ ∈ GUm

. We
claim that there is A′

m ∈ A(Am) and an (A
′
m \ Am, Lm)-function χm such that

B(σm + χm, A′

m \ Am, 1) 6⊂ GUm
.

Indeed, suppose that there is no such A′
m. Then B̂(σm, Am, Lm + 1) ⊂ GUm

.

To see this, let α ∈ B̂(σm, Am, Lm + 1). Thus, there is A ∈ A(Am) such that
α ∈ B(σm, A′, Lm + 1), where A′ = A \ Am. We have |σm(i) − α(i)| ≤ Lm + 1
for all i ∈ A′ and α(i) = σm(i) for i ∈ ω \ A′. Define a function β ∈ [n]ω

by setting β(i) = σm(i) for i ∈ ω \ A′, set β(i) = α(i) for i ∈ A′ such that
|α(i) − σm(i)| ≤ Lm and otherwise β(i) = σm(i) − Lm or β(i) = σm(i) + Lm

depending on whether α(i) < σm(i) or α(i) > σm(i). Clearly β ∈ B(σm, A′, Lm)
and ‖α − β‖ ≤ 1, and thus α ∈ B(σm + χ, A′, 1) for the (A′, Lm)-function χ =
β − σm. Therefore, by our assumption, we have α ∈ GUm

and consequently

this shows that B̂(σm, Am, Lm + 1) ⊂ GUm
, which is a contradiction with the

definition of Lm. (Notice that for this contradiction we need the crucial property
that Lm < n.) Thus, the desired function χm and the desired set A′

m ∈ A(Am)
exist.
Let

Lm+1 = max{ℓ(σ, A,G) : σ ∈ E, A ∈ A(A′

m)},

where E denotes the set of all extensions of σm + χm in B̂(σm, Am, Lm). It is
easy to see that Lm+1 ≤ Lm. We can find σm+1, Am+1, Um+1 with the following
properties:

1) Am+1 ∈ A(A′
m);

2) B̂(σm+1, Am+1, Lm+1) ⊂ GUm+1
;

3) B̂(α, A, Lm+1+1) 6⊂ GU for all A ∈ A(Am+1), all U ∈ U and all extensions

α ∈ S of σm+1 in B̂(σm+1, Am+1, Lm+1).

It follows that M(σm+1, Am+1, Lm+1, GUm+1
,G) holds. Finally, we note that

Condition 4) can easily be satisfied since Am+1 can be replaced by a larger infinite
set. This finishes the inductive step.
As Li+1 ≤ Li for i ∈ N∗, there is (the least) i0 ∈ N such that i ≥ i0 implies

Li = Li0 . (Moreover, notice that Li ≥ 1 for all i by the choice of n.) Define

σ̂ = lim σi,



510 A.Hohti

i.e., σ̂(i) = σk(i) for i ∈ Ak and σ̂(i) = 0 otherwise. Then σ̂ ∈ B̂(σi, Ai, Li0) for
all i ≥ i0. Indeed, the support of σ̂ is contained in Aω =

⋃
{Ak : k ∈ N} \ {nk :

k ∈ N∗}, and this is — by the inductive construction — an element of A(∅). For
each i ≥ i0, we have σ̂ = σi+χi, where χi is an (A, Li0)-function with A ∈ A(Ai).
We claim that i, j ≥ i0, i 6= j implies Ui 6= Uj . To prove this, let us assume i < j
and Ui = Uj to derive a contradiction. By our assumption and by the choice of
the sets GU , we have

(∗) B̂(σj , Aj , Li) ⊂ GUj
= GUi

,

and therefore B(σi + χi, A
′

i \ Ai, 1) ⊂ GUi
. To prove this claim, suppose that

ξ ∈ B(σi + χi, A
′

i \ Ai, 1). For k ∈ A′

i \ Ai we have by the definition of σi+1 that
σj(k) = σi(k) + χi(k). Notice that ξ(k) = 0 for all k ∈ ω \ A′

i. If k ∈ Aj \ A′

i,
then |σi(k)− σj(k)| ≤ Li0 . Finally, if k ∈ Ai, then σj(k) = σi(k). It then follows
from Li0 ≥ 1 that |ξ(k) − σj(k)| ≤ Li0 for all k ∈ Aj , and hence by (∗) we have
ξ ∈ GUi

. This contradiction proves that Ui 6= Uj .
Finally, we have |(G)σ̂ | ≥ ω. In fact, as ‖σi − σ̂‖ ≤ Li0 for all i ≥ i0 and by the

inductive construction B̂(σi, Ai, Li0) ⊂ GUi
, we have σ̂ ∈ GUi

for all i ≥ i0. But
then x ∈ Ui for infinitely many i, where x = (σ̂(i)/n). This concludes the proof
of 5.1. �

Remark 5.2. The statement of 5.1 is the best possible. One cannot prove con-
sistently with ZFC that under the hypotheses of 5.1 there is x ∈ U∞ such that
|(U)x| = κ > ω. Indeed, assume that CH (the continuum hypothesis) holds.
Then the uniformity of U∞ has a basis of covers of cardinality ω1. But then
a straightforward modification of the proof given for the uniformly locally finite
refinements of countable uniform covers in [20] shows that the uniformity of U∞

has a basis consisting of point-countable covers. Moreover, by using the method
of Section 3 we can thus construct a regular cubical triangulation K of U∞ and a

Sperner colouring ϕ : K(0) → {0, 1}ω such that ϕ(K) is at most a countable set
for each cube K of K.

Remark 5.3. The simplest proof showing that a metric (uniform) space is not
point-finite is given by Pelant and Rödl in [18]. In fact, they implicitly formulate
and prove a “weak” infinitary Sperner theorem. Suppose that m, n ∈ ω, n > 0,
and let ϕ : [im+n−1]

n → im be a mapping (“colouring”) such that a ∩ a′ = ∅
implies ϕ(a) 6= ϕ(a′) for all a, a′ ∈ [im+n+1]

n (“Sperner Condition”). Then there
exists a subset (“simplex”) ∆ ⊂ [im+n−1]

n such that 1) |∆| = im; 2) a 6= a′

implies ϕ(a) 6= ϕ(a′) for all a, a′ ∈ ∆ and 3) |
⋂
∆| = n − 1. The proof (by

induction on n) easily follows from the strong assumptions. This result is used to
show that ℓ1(iω) is not point-finite.

Remark 5.4. Theorem 5.1 as such does not imply a useful fixed point theorem
for mappings U∞ → U∞. Indeed, the regular cubical triangulations correspond
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to uniformly continuous mappings f : U∞ → U∞, but the usual method of using
Sperner’s Lemma (see e.g. [10]) only yields that for each ǫ > 0 there is an infinite
set A ⊂ ω and x ∈ U∞ such that |xi − (f(x))i| < ǫ for i ∈ A. This can readily
be proved without the use of 5.1. It has been shown ([1]) that there are even
Lipschitz mappings f : U∞ → U∞ without approximate fixed point; i.e., there is
ǫ > 0 such that ‖x − f(x)‖ℓ∞ ≥ ǫ for all x ∈ U∞. This leads us to the following
question.

Question: Let f : U∞ → U∞ be a uniformly continuous mapping. Is there an
infinite subset A ⊂ ω such that (f(x))i = xi for i ∈ A?

Remark 5.5. By [17], a metric space is point-finite if and only if it can be
uniformly embedded into c0(Γ) for some set Γ. Therefore, we obtain as a corollary
to 5.1 that there is no uniform (save Lispchitz) embedding of ℓ∞ into c0(Γ) for
any Γ. As such, this seems to be a new result related to the uniform and Lipschitz
classification of Banach spaces.

6. An infinitary version of Sperner’s Lemma

In this section we state and prove our infinitary version of Sperner’s Lemma.
Let us recall that a mapping ϕ : [n]ω → {0, 1}ω is a Sperner colouring if ϕ(σ) 6=
ϕ(σ′) whenever ‖σ − σ′‖ = n.

Theorem 6.1. Let n ∈ N and let ϕ : [n]ω → {0, 1}ω be a Sperner colouring.

Then there is σ ∈ [n]ω such that ϕ(Kσ) is infinite.

Proof: We will define a uniform cover U of U∞ and apply Theorem 5.1. For
each σ ∈ [n]ω define the set Gσ as the product

Gσ =
∏

k∈N

Ik(σ),

where for each k ∈ N, Ik(σ) is the open interval ]
σ(k)−2/3

n ,
σ(k)+2/3

n [ for 0 <
σ(k) < n, the interval [0, 1/n[ for σ(k) = 0 and ]1−1/n, 1] for σ(k) = n. For each
τ ∈ {0, 1}ω, let

Uτ =
⋃

{Gσ : ϕ(σ) = τ}.

Then U = {Uτ : τ ∈ {0, 1}ω} is a uniform (open) cover of U∞, and diam(Uτ ) < 1
for all τ , because ϕ is a Sperner colouring. By 5.1 there is x ∈ U∞ such that
(U)x is infinite. Thus, x is contained in infinitely many sets Gσ , each mapped
by ϕ to a different τ . Let Σ be an infinite set of elements σ such that x ∈ Gσ

and which (pairwise) map to distinct colours. Given two such elements σ1, σ2, we
have |σ1(i)− σ2(i)| ≤ 1 for all i, by the definition of the sets Gσ. It follows that
there is a cube Kσ for which Σ forms a subset of vertices; indeed, we may define
σ as the coordinatewise infimum of the elements of Σ. This proves 6.1. �



512 A.Hohti

Remark 6.2. In the same way as the classical Sperner’ Lemma corresponds to
a homology theory of simplicial complexes (see, e.g. [2]), our infinitary version of
Sperner’s Lemma (Theorem 6.1) corresponds to an infinitary homology theory of
infinite-dimensional cubical complexes.

7. The case of c0

As noted earlier, the regular cubical triangulations of the unit ball of the Ba-
nach space c0 correspond to the sets [n]

<ω of all σ ∈ [n]ω such that s(σ) = {k ∈
ω : σ(k) 6= 0} is finite. We also noted that the infinitary version of Sperner’s
Lemma does not hold for these sets. However, although there are Sperner colour-
ings ϕ : [n]<ω → ω such that for each cube Kσ the vertices re coloured with only
finitely many colours, one can show that there is a sequence (Kσk

) of cubes and
a sequence (τk)k∈N of distinct colours τk ∈ ω such that

1) {τ1, . . . , τk} ⊂ ϕ(Kσk
);

2) σk+1 is an extension of σk for each k, i.e., σk+1(i) = σk(i) for i ∈ s(σk),
where s(σ) denotes the support of σ.

This result is obtained from the following version of Lebesgue’s Covering Dimen-
sion Theorem for the unit cube U(c0) of c0. It is established by virtually the
same proof as that given for 5.1 except that the families A(S) are replaced by the
families F(S) of finite subsets. (Let us note that even this result was announced
by Pelant in 1986. The proof was based on his technique of cornets.)

Theorem 7.1. Let U be a uniform covering of U(c0) such that diam(U) < 1 for
each U ∈ U . Then there is a sequence (Un)n∈N of elements of U such that for
each n ∈ N, we have U1 ∩ · · · ∩ Un 6= ∅.

We will interpret 7.1 with respect to Noetherian covers of uniform spaces.
Let X be a set, and let V be any point-finite cover of X . There is a natural
partially ordered set P(V) associated with V which consists of all finite subsets
{V1, . . . , Vn} such that V1 ∩ · · · ∩ Vn 6= ∅ and which is ordered with respect to
set inclusion. (The poset P(V) corresponds to a simplicial complex in which
the finite intersecting subsets are regarded as simplices.) The cover V is called
Noetherian if P(V) does not contain any infinite increasing chain. Theorem 7.1
implies that no bounded uniform cover of U(c0) is Noetherian. Since the Lebesgue
covering dimension of an n-cube can be regarded as the minimum of the maximal
length of chains in posets P(V), where V is a bounded open covering of the cube,
Theorem 7.1 can again be considered an infinitary version of Lebesque’s Covering
Dimension Theorem. As in the case of U(ℓ∞), the extension fails for general
open coverings. Indeed, any paracompact space has a base of open Noetherian
coverings (this result has been established independently by J. Fried [7]). The idea
of considering Noetherian covers of uniform spaces instead of simply point-finite
covers is due to J. Viĺımovský.
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The infinite chains of intersecting sets are representatives of infinite-dimen-
sional simplices of dimension ω, and 7.1 corresponds to an infinitary homology
theory in the same way as the classical Sperner’s Lemma is related to the classical
simplicial homology theory. In this context, the cube U(c0) represents the finitary
boundary of U(ℓ∞), to be compared with Sn−1 as the boundary of In. These
problems will be considered in another paper.

Acknowledgment. The author expresses his gratitude, once again, to Heikki
Junnila for his helpful comments. The author also thanks the anonymous referee
for correcting remarks.

Remark (added in proof): Unfortunately, Jan Pelant passed away when this
paper was still being refereed. The problem of point-finiteness of uniform spaces
was one of his main mathematical questions. He had already contributed to
this problem by 1974 in the Seminar Uniform Spaces in Prague, and he later also
announced the result proved in the present paper that ℓ∞ is not point-finite as well
as the corresponding result on c0. To emphasize his contribution to this problem,
we mention his definitive characterization [17] of point-finite metric spaces as the
ones that can be uniformly embedded into c0(Γ) for some Γ. Regrettably, he will
now not be able to publish his version of the results presented here. Fortunately,
however, he was aware of our version through many conversations for which we
express our deep gratitude, even though it comes too late.
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