Article
Keywords:
isometry; embedding of $\ell_\infty$; dual space; Banach lattice
Summary:
Let $X$ and $E$ be a Banach space and a real Banach lattice, respectively, and let $\Gamma$ denote an infinite set. We give concise proofs of the following results: (1) The dual space $X^*$ contains an isometric copy of $c_0$ iff $X^*$ contains an isometric copy of $\ell_\infty $, and (2) $E^*$ contains a lattice-isometric copy of $c_0(\Gamma)$ iff $E^*$ contains a lattice-isometric copy of $\ell_\infty(\Gamma)$.
References:
[1] Abramovich Y.A., Wickstead A.W.:
When each continuous operator is regular. II. Indag. Math., N.S. 8 (1997), 281-294.
MR 1622216 |
Zbl 0908.47031
[3] Bessaga C., Pełczyński A.:
On basis and unconditional convergence of series in Banach spaces. Studia Math. 17 (1958), 151-164.
MR 0115069
[4] Dowling P.N.:
Isometric copies of $c_0$ and $\ell_\infty$ in duals of Banach spaces. J. Math. Anal. Appl. 244 (2000), 223-227.
MR 1746799 |
Zbl 0955.46011
[7] Rosenthal H.P.:
On injective Banach spaces and the spaces $L^\infty(\mu)$ for finite measures $\mu $. Acta Math. 124 (1974), 205-247.
MR 0257721
[8] Rosenthal H.P.:
On relatively disjoint families of measures, with some applications to Banach space theory. Studia Math. 37 (1970), 13-36.
MR 0270122 |
Zbl 0227.46027
[9] Wójtowicz M.:
The Sobczyk property and copies of $\ell_\infty$ in locally convex-solid Riesz spaces. Arch. Math. 75 (2000), 376-379.
MR 1785446