Previous |  Up |  Next

Article

Keywords:
Pettis integral; decomposable set; convex set; Alexiewicz norm
Summary:
In the present work we prove that, in the space of Pettis integrable functions, any subset that is decomposable and closed with respect to the topology induced by the so-called Alexiewicz norm $\left| \left\|\cdot \right\| \right|$ \big(where $\left| \left\| f\right\| \right| =\sup_{[a,b] \subset [0,1]} \big\| \int_{a}^{b}f(s) ds \big\|$\big) is convex. As a consequence, any such family of Pettis integrable functions is also weakly closed.
References:
[ACT] Azzam D.L., Castaing C., Thibault L.: Three boundary value problems for second order differential inclusions in Banach spaces. Well-posedness in optimization and related topics. Control Cybernet. 31 3 (2002), 659-693. MR 1978746
[CaV] Castaing C., Valadier M.: Convex analysis and measurable multifunctions. Lecture Notes in Mathematics 580, Springer, Berlin-New York, 1977. MR 0467310 | Zbl 0346.46038
[Chu] Chuong P.V.: A density theorem with an application in relaxation of nonconvex-valued differential equations. Séminaire d'Analyse convexe Montpellier, Exposé n${^o}$2, 1985. MR 0857774 | Zbl 0657.35128
[DiU] Diestel J., Uhl J.J., Jr.: Vector Measures. Math. Surveys 15, Amer. Math. Soc., Providence, RI, 1977. MR 0453964 | Zbl 0521.46035
[Fry] Fryszowski A.: Continuous selections for a class of non-convex multivalued maps. Studia Math. T. LXXVI (1983), 163-174.
[Gut] Gutman S.: Topological equivalence in the space of integrable vector-valued functions. Proc. Amer. Math. Soc. 93 1 (1985), 40-42. MR 0766523 | Zbl 0529.46027
[HiU] Hiai F., Umegaki H.: Integrals, conditional expectations, and martingales of multivalued functions. J. Multivariate Anal. 7 (1977), 149-182. MR 0507504 | Zbl 0368.60006
[HuP1] Hu S., Papageorgiou N.S.: Handbook of Multivalued Analysis, Vol. I. Theory. Kluwer Academic Publishers, Dordrecht, 1997. MR 1485775
[HuP2] Hu S., Papageorgiou N.S.: Handbook of Multivalued Analysis, Vol. II. Applications. Kluwer Academic Publishers, Dordrecht, 2000. MR 1741926
[Kni] Knight W.J.: Solutions of differential equations in Banach spaces. Duke Math. J. 41 (1974), 437-442. MR 0344624
[Mus] Musial K.: Topics in the theory of Pettis integration. in: School of Measure Theory and Real Analysis (Grado, 1991), Rend. Istit. Mat. Univ. Trieste 23 (1991), 177-262. MR 1248654 | Zbl 0798.46042
[Ole] Olech C.: Decomposability as a substitute for convexity. Multifunctions and Integrands (Catania, 1983), Lecture Notes in Math. 1091, Springer, Berlin, 1984, pp.193-205. MR 0785586 | Zbl 0592.28008
[Pod] Podczeck K.: On core-Walras equivalence in Banach spaces when feasibility is defined by the Pettis integral. J. Math. Econom. 40 (2004), 429-463. MR 2070705 | Zbl 1096.91047
[Sch1] Schechter E.: Evolution generated by continuous dissipative plus compact operators. Bull. London Math. Soc. 13 (1981), 303-308. MR 0620042 | Zbl 0443.34061
[Sch2] Schechter E.: Perturbations of regularizing maximal monotone operators. Israel J. Math. 43 (1982), 49-61. MR 0728878 | Zbl 0516.34060
[Sik] Sikorska A.: Existence theory for nonlinear Volterra integral and differential equations. J. Inequal. Appl. 6 (2001), 325-338. MR 1889019 | Zbl 0992.45006
[Sze] Szep A.: Existence theorem for weak solutions of ordinary differential equations in reflexive Banach spaces. Studia Sci. Math. Hungar. 6 (1971), 197-203. MR 0330688
Partner of
EuDML logo