Previous |  Up |  Next

Article

Keywords:
distribution; projective space; Fourier-Laplace series; Ces\`aro summability
Summary:
We show that the Fourier-Laplace series of a distribution on the real, complex or quarternionic projective space is uniformly Ces\`aro-summable to zero on a neighbourhood of a point if and only if this point does not belong to the support of the distribution.
References:
[1] Fomenko A.T.: Symplectic Geometry. Gordon and Breach Science Publishers, New York, 1988. MR 0994805 | Zbl 0873.58031
[2] González Vieli F.J.: Fourier inversion of distributions on the sphere. J. Korean Math. Soc. 41 (2004), 755-772. MR 2068151 | Zbl 1066.46031
[3] Hardy G.H.: Divergent Series. Clarendon Press, Oxford, 1949. MR 0030620 | Zbl 0897.01044
[4] Helgason S.: Differential Geometry and Symmetric Spaces. Academic Press, New York, 1962. MR 0145455 | Zbl 0122.39901
[5] Kahane J.-P., Salem R.: Ensembles parfaits et séries trigonométriques. Hermann, Paris, 1963. MR 0160065 | Zbl 0856.42001
[6] Stein E.M., Weiss G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton, 1971. MR 0304972 | Zbl 0232.42007
[7] Walter G.: Pointwise convergence of distribution expansions. Studia Math. 26 (1966), 143-154. MR 0190624 | Zbl 0144.37401
Partner of
EuDML logo