Previous |  Up |  Next

Article

Keywords:
torsion theory; differential filter; localization; colocalization; $f$-derivation
Summary:
If $\tau $ is a hereditary torsion theory on $\bold{Mod}_{R}$ and $Q_{\tau }:\bold{Mod}_{R}\rightarrow \bold{Mod}_{R}$ is the localization functor, then we show that every $f$-derivation $d:M\rightarrow N$ has a unique extension to an $f_{\tau }$-derivation $d_{\tau }:Q_{\tau }(M)\rightarrow Q_{\tau }(N)$ when $\tau $ is a differential torsion theory on $\bold{Mod}_{R}$. Dually, it is shown that if $\tau $ is cohereditary and $C_{\tau }:\bold{Mod}_{R}\rightarrow \bold{Mod}_{R}$ is the colocalization functor, then every $f$-derivation $d:M\rightarrow N$ can be lifted uniquely to an $f_{\tau }$-derivation $d_{\tau }:C_{\tau }(M)\rightarrow C_{\tau }(N)$.
References:
[1] Alin J.S., Armendariz E.P.: TTF classes over perfect rings. J. Austral. Math. Soc. 11 (1970), 499-503. MR 0274495 | Zbl 0221.16006
[2] Anderson F.W., Fuller K.R.: Rings and Categories of Modules. Springer, Berlin, 1973. MR 1245487 | Zbl 0765.16001
[3] Beachy J.A.: Cotorsion radical and projective modules. Bull. Austral Math. Soc. 5 (1971), 241-253. MR 0292879
[4] Bland P.E.: Differential torsion theory. J. Pure Appl. Algebra 204 (2006), 1 1-8. MR 2183307 | Zbl 1102.16020
[5] Bland P.E.: Topics in Torsion Theory. Mathematical Research 103, Wiley-VCH, Berlin, 1998. MR 1640903 | Zbl 0899.16013
[6] Dlab V.: A characterization of perfect rings. Pacific J. Math. 33 (1970), 79-88. MR 0262297 | Zbl 0209.07201
[7] Gabriel P.: Des catégories abeliennes. Bull. Soc. Math. France 90 (1962), 323-448. MR 0232821 | Zbl 0201.35602
[8] Bronn S.D.: Cotorsion theories. Pacific J. Math. 48 (1973), 355-363. MR 0393131 | Zbl 0285.16026
[9] Golan J.S.: Extension of derivations to modules of quotients. Comm. Algebra 9 3 (1981), 275-281. MR 0603349 | Zbl 0454.16020
[10] Golan J.S.: Torsion Theories. Pitman Monographs and Surveys in Pure and Applied Mathematics 29, Longman Scientific and Technical, Harlow, 1986. MR 0880019 | Zbl 0695.16021
[11] Jans J.P.: Some aspects of torsion. Pacific J. Math. 15 (1965), 1249-1259. MR 0191936 | Zbl 0142.28002
[12] Lam T.Y.: Lecture on Modules and Rings. Graduate Texts in Mathematics 189, Springer, New York, 1999.
[13] McMaster R.J.: Cotorsion theories and colocalization. Canad. J. Math. 27 (1971), 618-628. MR 0401818
[14] Ohtake K.: Colocalization and localization. J. Pure Appl. Algebra 11 (1977), 217-241. MR 0470027
[15] Sato M.: The concrete description of colocalization. Proc. Japan Acad. 52 (1976), 501-504. MR 0432688
Partner of
EuDML logo