Article
Keywords:
hereditary torsion theory; torsion theory of finite type; Goldie's torsion theory; non-singular module; non-singular ring; precover class; cover class
Summary:
One of the results in my previous paper {\it On torsionfree classes which are not precover classes\/}, preprint, Corollary 3, states that for every hereditary torsion theory $\tau$ for the category $R$-mod with $\tau \geq\sigma$, $\sigma$ being Goldie's torsion theory, the class of all $\tau$-torsionfree modules forms a (pre)cover class if and only if $\tau$ is of finite type. The purpose of this note is to show that all members of the countable set $\frak M = \{R, R/\sigma (R), R[x_1,\dots ,x_n], R[x_1,\dots ,x_n]/\sigma(R[x_1,\dots ,x_n]), n <\omega \}$ of rings have the property that the class of all non-singular left modules forms a (pre)cover class if and only if this holds for an arbitrary member of this set.
References:
[1] Anderson F.W., Fuller K.R.:
Rings and Categories of Modules. Graduate Texts in Mathematics, vol.13 Springer, New York-Heidelberg (1974).
MR 0417223 |
Zbl 0301.16001
[2] Bican L.:
Torsionfree precovers. Contributions to General Algebra 15, Proceedings of the Klagenfurt Conference 2003 (AAA 66), Verlag Johannes Heyn, Klagenfurt, 2004, pp.1-6.
MR 2080845 |
Zbl 1074.16002
[5] Bican L., El Bashir R., Enochs E.:
All modules have flat covers. Proc. London Math. Soc. 33 (2001), 649-652.
MR 1832549 |
Zbl 1029.16002
[8] Bican L., Kepka T., Němec P.:
Rings, Modules, and Preradicals. Marcel Dekker New York (1982).
MR 0655412
[9] Golan J.:
Torsion Theories. Pitman Monographs and Surveys in Pure and Applied Mathematics, 29 Longman Scientific and Technical, Harlow (1986).
MR 0880019 |
Zbl 0657.16017
[12] Teply M.L.:
Some aspects of Goldie's torsion theory. Pacific J. Math. 29 (1969), 447-459.
MR 0244323 |
Zbl 0174.06803
[13] Xu J.:
Flat Covers of Modules. Lecture Notes in Mathematics 1634 Springer, Berlin-Heidelberg-New York (1996).
MR 1438789 |
Zbl 0860.16002