Previous |  Up |  Next

Article

Keywords:
CAT$(-1)$ spaces; ideal polyhedron; visual boundary
Summary:
It is proved that for every two points in the visual boundary of the universal covering of a $2$-dimensional ideal polyhedron, there is an infinity of paths joining them.
References:
[1] Benakli N.: Polyédres hyperboliques, passage du local au global. Thése, Université de Paris-Sud, 1992.
[2] Bourdon M.: Structure conforme au bord et flot géodésique d'un CAT$(-1)$-espace. Enseign. Math. 41 (1995), 63-102. MR 1341941
[3] Coornaert M.: Sur les groupes proprement discontinus d'isometries des espaces hyperboliques au sens de Gromov. Thèse, U.L.P., 1990. Zbl 0777.53044
[4] Charitos C., Papadopoulos A.: The geometry of ideal $2$-dimensional simplicial complexes. Glasgow Math. J. 43 39-66 (2001). MR 1825722 | Zbl 0977.57003
[5] Charitos C., Papadopoulos A.: Hyperbolic structures and measured foliations on $2$-dimensional complexes. Monatsh. Math. 139 1-17 (2003). MR 1981114 | Zbl 1029.57003
[6] Charitos C., Papadopoulos A.: On the isometries of ideal polyhedra. Rend. Circ. Mat. Palermo (2) 54 1 (2005), 71-80. MR 2150807 | Zbl 1194.57006
[7] Charitos C., Tsapogas G.: Geodesic flow on ideal polyhedra. Canad. J. Math. 49 4 696-707 (1997). MR 1471051 | Zbl 0904.52004
[8] Charitos C., Tsapogas G.: Complexity of geodesics on $2$-dimensional ideal polyhedra and isotopies. Math. Proc. Camb. Phil. Soc. 121 343-358 (1997). MR 1426528 | Zbl 0890.57047
[9] Ghys E., de la Harpe P.: Sur les groupes hyperboliques d'après Mikhael Gromov. Progress in Mathematics, vol. 83, Birkhäuser, Boston, 1990, pp.1-25. MR 1086648 | Zbl 0731.20025
[10] Gromov M.: Structures Métriques pour les Variétés Riemanniennes. J. Lafontaine and P. Pansu, Eds., Fernand Nathan, Paris, 1981. MR 0682063 | Zbl 0509.53034
[11] Gromov M.: Hyperbolic Groups. in Essays in Group Theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp.75-263. MR 0919829 | Zbl 1022.20501
[12] Haglund F.: Les polyédres de Gromov. Thése, Université de Lyon I, 1992. MR 1133493 | Zbl 0749.52011
[13] Kapovich I., Benakli N.: Boundaries of hyperbolic groups. Combinatorial and Geometric Group Theory (New York, 2000/Hoboken, NJ, 2001), Contemp. Math. 296, Amer. Math. Soc., Providence, RI, 2002, pp.39-93. MR 1921706 | Zbl 1044.20028
[14] Paulin F.: Constructions of hyperbolic groups via hyperbolizations of polyhedra. in: Group Theory from a Geometrical Viewpoint, ICTP, Trieste, Italy, 1990, E. Ghys and A. Haefliger, Eds., World Sci. Publishing, River Edge, NJ, 1991, pp.313-372. MR 1170371 | Zbl 0843.20032
[15] Thurston W.P.: Three-dimensional Geometry and Topology. Princeton University Press, Princeton, NJ, 1997. MR 1435975 | Zbl 0873.57001
Partner of
EuDML logo