[1] Bate J.A., van Rees G.H.J.:
Minimal and near-minimal critical sets in back circulant latin squares. Australas. J. Combin. 27 (2003), 47-61.
MR 1955387 |
Zbl 1024.05014
[2] Cavenagh N.J.:
Embedding $3$-homogeneous latin trades into abelian $2$-groups. Comment. Math. Univ. Carolin. 45 (2004), 191-212.
MR 2075269 |
Zbl 1099.05503
[3] Cavenagh N.J.:
The size of the smallest latin trade in a back circulant latin square. Bull. Inst. Combin. Appl. 38 (2003), 11-18.
MR 1977014 |
Zbl 1046.05015
[4] Cavenagh N.J., Donovan D., Drápal A.:
$3$-homogeneous latin trades. Discrete Math. 300 (2005), 57-70.
MR 2170114 |
Zbl 1073.05012
[5] Cavenagh N.J., Donovan D., Drápal A.:
$4$-homogeneous latin trades. Australas. J. Combin. 32 (2005), 285-303.
MR 2139816 |
Zbl 1074.05020
[6] Cooper J., Donovan D., Seberry J.:
Latin squares and critical sets of minimal size. Australas. J. Combin. 4 (1991), 113-120.
MR 1129273 |
Zbl 0759.05017
[7] Donovan D., Howse A., Adams P.:
A discussion of latin interchanges. J. Combin. Math. Combin. Comput. 23 (1997), 161-182.
MR 1432756 |
Zbl 0867.05010
[8] Donovan D., Mahmoodian E.S.:
An algorithm for writing any latin interchange as the sum of intercalates. Bull. Inst. Combin. Appl. 34 (2002), 90-98.
MR 1880972
[9] Drápal A.:
On a planar construction of quasigroups. Czechoslovak Math. J. 41 (1991), 538-548.
MR 1117806
[10] Drápal A.:
Hamming distances of groups and quasi-groups. Discrete Math. 235 (2001), 189-197.
MR 1829848 |
Zbl 0986.20065
[11] Drápal A.: Geometry of latin trades. manuscript circulated at the conference Loops'03, Prague, 2003.
[12] Drápal A., Kepka T.:
Exchangeable Groupoids I. Acta Univ. Carolin. Math. Phys. 24 (1983), 57-72.
MR 0733686
[13] Drápal A., Kepka T.:
On a distance of groups and latin squares. Comment. Math. Univ. Carolin. 30 (1989), 621-626.
MR 1045889
[14] Fu C.-M., Fu H.-L.:
The intersection problem of latin squares. J. Combin. Inform. System Sci. 15 (1990), 89-95.
MR 1125351 |
Zbl 0743.05009
[15] Horak P., Aldred R.E.L., Fleischner H.:
Completing Latin squares: critical sets. J. Combin. Designs 10 (2002), 419-432.
MR 1932121 |
Zbl 1025.05011
[16] Keedwell A.D.:
Critical sets for latin squares, graphs and block designs: A survey. Congr. Numer. 113 (1996), 231-245.
MR 1393712 |
Zbl 0955.05019
[17] Keedwell A.D.:
Critical sets in latin squares and related matters: an update. Util. Math. 65 (2004), 97-131.
MR 2048415 |
Zbl 1053.05019
[18] Khosrovshahi G.B., Maimani H.R., Torabi R.:
On trades: an update. Discrete Appl. Math. 95 (1999), 361-376.
MR 1708848 |
Zbl 0935.05015
[19] Street A.P.:
Trades and defining sets. in: C.J. Colbourn and J.H. Dinitz, ed., CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, FL., USA, 1996, 474-478.
Zbl 0847.05011