Previous |  Up |  Next

Article

Keywords:
Riesz norm; matricially Riesz normed space; positively bounded; absolutely $\Cal F$-convex; $\Cal F$-Riesz norm
Summary:
In this paper, the $\Cal F$-Riesz norm for ordered $\Cal F$-bimodules is introduced and characterized in terms of order theoretic and geometric concepts. Using this notion, $\Cal F$-Riesz normed bimodules are introduced and characterized as the inductive limits of matricially Riesz normed spaces.
References:
[1] Choi M.D., Effros E.G.: Injectivity and operator spaces. J. Funct. Anal. 24 (1977), 156-209. MR 0430809 | Zbl 0341.46049
[2] Effros E.G., Ruan Z.J.: On matricially normed spaces. Pacific J. Math. 132 2 (1988), 243-264. MR 0934168 | Zbl 0686.46012
[3] Karn A.K.: Approximate matrix order unit spaces. Ph.D. Thesis, University of Delhi, Delhi, 1997. Zbl 0902.46030
[4] Karn A.K., Vasudevan R.: Approximate matrix order unit spaces. Yokohama Math. J. 44 (1997), 73-91. MR 1453353 | Zbl 0902.46030
[5] Karn A.K., Vasudevan R.: Characterization of matricially Riesz normed spaces. Yokohama Math. J. 47 (2000), 143-153. MR 1763778 | Zbl 0965.46002
[6] Ramani J.V., Karn A.K., Yadav S.: Direct limit of matrix ordered spaces. Glasnik Matematicki 40 2 (2005), 303-312. MR 2189476 | Zbl 1098.46044
[7] Ruan Z.J.: Subspaces of $C^\ast $-algebras. J. Funct. Anal. 76 (1988), 217-230. MR 0923053 | Zbl 0646.46055
Partner of
EuDML logo