Commentationes Mathematicae Universitatis Carolinae

J. V. Ramani; Anil Kumar Karn; Sunil Yadav
Direct limit of matricially Riesz normed spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 47 (2006), No. 1, 175--187

Persistent URL: http://dml.cz/dmlcz/119574

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2006

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/119574
http://project.dml.cz

Comment.Math.Univ.Carolin. 47,1 (2006)55 67

Direct limit of matricially Riesz normed spaces

J.V. Ramani, ANIL K. KARN, SUNIL YADAV

Abstract. In this paper, the F-Riesz norm for ordered F-bimodules is introduced and
characterized in terms of order theoretic and geometric concepts. Using this notion,
JF-Riesz normed bimodules are introduced and characterized as the inductive limits of
matricially Riesz normed spaces.
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1. Introduction

Effros and Ruan, as suggested by B.E. Johnson, initiated a study of normed F-
bimodules as direct limits of matrix normed spaces [2]. In [6] the authors studied
the direct limit of matrix ordered spaces. Continuing this line, in this paper we
discuss the direct limits of matricially Riesz normed spaces (studied by [4], [5]).
As a consequence we introduce the notion of F-Riesz normed bimodules.

We recall the following notions discussed in [6] (see also [2]).

Matricial notions.

Let V be a complex vector space. Let My (V') denote the set of all n x n matrices
with entries from V. For V = C, we denote My (C) by My. For a = [aij] € My,
and v = [v;;] € My (V) we define

n n
av = E aijvjk , va = E vijajk
j=1 7j=1

Then My, (V) is a Mpy-bimodule for all n € N. In particular M, (V) is a complex
vector space for all n € N. For v € My, (V), w € Mp,(V), we define

v

vPhw = [0

3] € My (V).

Next, we consider the family {My,}. For each n,m € N define oy, pym : Mp —
Mytm by onpniym(e) = a®0p,. Then oy pym is a vector space isomorphism with

on,n+m(aB) = onntm()onntm(B).
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Thus we may “identify” M, in My, as a subalgebra for every m € N. More
generally, we may identify M, in the set F of co X oo complex matrices, having
entries zero after first n rows and first n columns. Then F may be considered as
the direct or inductive limit of the family {My,}. In this sense

o
F=J M.

n=1

Let e;; denote the oo x oo matrix with 1 at the (4,7)th entry and 0 elsewhere.
Then the collection {eij} is called the set of matrix units in F. We write 1, for
i1 €ii-

For i, j,k,l € N, we have e;jer; = dje;. Note that for any a € F, there exist
complex numbers «;; such that

o= Z a;jei; (a finite sum).
i7j

Thus F is an algebra.
For a = Zi’j a;je;; € F, we define o = Zi’j ajie;j € F. Then a — o is
an involution. In other words, F is a x-algebra.

Definition 1.1. Let V be a complex vector space. Consider the family { M, (V)}.
For each n,m € N, define T nym : Mp(V) — Muim(V) by Tnntm(v) =
v @ O,y Oy € My (V). Then Ty, is an injective homomorphism. Let V be
the inductive limit of the directed family {Mn(V)7 Tn7n+m}. We shall call V the
matricial inductive limit or direct limit of V.

The matricial inductive limit of a complex vector space V' may be characterized
in the following sense:

Theorem 1.2. Let W be a non-degenerate F-bimodule. Put W = ej1Weq.
Then W is a complex vector space and W is its matricial inductive limit ([2]).

Definition 1.3 (Matrix normed space). Let V be a complex vector space. Then
My (V), the space of n X n matrices with entries from V', is an My-bimodule for
all n € N. A matriz norm on V is a sequence {|-||,,} such that |||, is a norm
on My (V) for all n € N. We say that (V,{||-||,,}) is a matriz normed space if
[0 Ol = [0, and llawsl, < llall [0l 18] for all v € Mq(V), . 5 € My
and n,m € N ([7]).

Definition 1.4 (F-bimodule norm). Let V be a non-degenerate F-bimodule. Let
Il be a norm on V. Then we say ||| is an F-bimodule norm on V if |avg| <
Il Il 18], for any «, 8 € F, v € V. In this case we say that V is a non-
degenerate normed F-bimodule.
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Theorem 1.5. Let (V,{||-||,,}) be a matrix normed space. Let V be the matricial
inductive limit of V. For each v € V, we define ||v|| as follows: let n € N be such
that 1,v1,, = v. Write ||v|| = ||v||,,- Then this definition is independent of the
choice of n and introduces an F-bimodule norm on V such that (V,|]|) is a
non-degenerate normed JF-bimodule.

Conversely, let (W, ||-||) be a non-degenerate normed F-bimodule and let W =
14W1y and |||, = ||| |Mn(W) for alln € N. Then (W, {||||,,}) is a matrix normed
space whose matricial inductive limit is (W, ||-]|)-

Remark. This characterization can be extended to * vector spaces as follows:
Let V be a % vector space and let V be the matricial inductive limit of V', so
that V is a non-degenerate F-bimodule ([6]). Let (V,{||-|/,,}) be a matrix normed
space such that for every n € N and v € My(V), [[v*|,, = ||v[,,- Let (V,|-I)
be the matricial inductive limit of the matrix normed space (V,{||-,,}). Then
lv*]| = |jv]| for all v € V.

Next, we recall the definition of an ordered F-bimodule and its characterization
as a matricial inductive limit space from [6]:

Definition 1.6 (Ordered F-bimodule). Let V be a *-F-bimodule. Let VT be a
bimodule cone in Vg,. That is

1. v1,v9 € V= +v € V+,
2. veEVT,acF=a*vacVT.
Then (V, V) will be called an ordered F-bimodule.

The following result is obtained from [6].

Theorem 1.7. Let (V,{Mn(V)"}) be a matrix ordered space. Let V be the
matricial inductive limit of V. Then (V,V1) is a non-degenerate ordered F-
bimodule, where YVt = (J°; My (V)T. Conversely, let (W,W*) be a non-
degenerate ordered F-bimodule. Put W = 1;W1; and M,(W)T = 1,WT1,
for all n € N. Then (W,{My(W)*}) is a matrix ordered space with W* =
U, My (W)

2. F-Riesz norm

We now characterize F-bimodule norms.

Definition 2.1. Let V be a non-degenerate F-bimodule. Let U4 C V. We say
U is absolutely F-convex if Ele a;u;B; € U whenever uy,ug,...,u, € U and

ar,a9,...,0, 01, P2,...,0 € F with Z?:l ||CYZ||2 < 1 and Zi‘g:l ||ﬁz||2 <1. If
the property holds true only for k = 1 then we say U is F-circled.

o7



58

J.V.Ramani, A.K. Karn, S. Yadav

Theorem 2.2. The open unit ball of a non-degenerate normed F-bimodule
(V,||-}) is absolutely F-convex and absorbing.

PROOF: Let U denote the open unit ball of (V,|-||). Let uj,ug,...,u; € U and

ar,Q9,...,Q,B1,02,...,0 € F with Z?:l ||CYZ||2 < 1 and Zi‘g:l ||ﬁ2||2 < 1.
Consider u = Zle a;u; ;. Then

k
> auibi
i=1

1/2

g@nain?) (énmn?) <1

Therefore w € Y. Thus U is absolutely F-convex. To show that U is absorbing
consider av € V and € > 0. Put v1 = (”Ur’m Then v; € U and v = vy (||v]| + €).

Therefore U is absorbing. O

Jul =

k k
<D Ml el 180 < > llevll 1]
=1 i=1

1/2

The following theorem completes the characterization of F-bimodule norms
among norms on V.

Theorem 2.3. Let A C V be absolutely F-convex and absorbing. Then the
gauge of A,
p(v) =inf{k > 0| v € kA}

determines an F-bimodule semi-norm on V.

PrOOF: First we note that p(v) > 0 for all v € V. From the definition, we get
that p(kv) = |k|p(v) for all k € C. We now show that p(v + w) < p(v) + p(w)
for all v,w € V. Let v,w € V and Se > 0. Then there exist ki, kg > 0 such that
k1 < p(v) + § with v € k1A and ko < p(w) + § with w € ko A. We show that

v+w € (k1 + ko) A. We set o = kllj-lky 8 = kllj'ka. Then o + 3 = 1. Also
Bw

av _ v _w v Bw _ vtw .
H = m, k—2 = m Thus we get H + H = TiFky- AS A 1S abSOlutely
F-convex, it is convex. Thus v+ w € (k1 + k2)A. It follows that

p(v+w) < ki + ks < p(v) + plw) + e

As e > 0 is arbitrary we get that p(v + w) < p(v) + p(w). Next, we show that
plavf) < |laf p(v) |8|| for all «, 3 € F, v € V. First, let v € A. Then p(v) < 1.
Let a, 8 € F with ||| < 1, ||8]] < 1. Since A is absolutely F-convex, avf € A.

Therefore p(avB) < 1. Now let v € V and o, 3 € F, € > 0. Put v; = W.
Then p(vy) = p%;}le < 1. That is v; € A. Without loss of generality we may

take a £ 0, 8 # 0. Let ay = ﬁ7 61 = ﬁ Then p(ajv161) < 1 so that

plavB) <|lall (p(v) + ) [18]] -
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As € > 0 is arbitrary we get

plawp) <l (p(v)) 15 -

Hence p(-) is a F-semi-norm on V. O

In the rest of the paper we will be dealing with non-degenerate ordered F-
bimodules. We introduce some more notations.

We write I, = Y i €ii, Jn = D iq €in+i for any n € N. Note that ||I,,|| =
|Jnll = 1 and Jplp = 0, Indy, = Jn, Jndn = 0, JpJi = In. Let (V,VT) be a
non-degenerate ordered F-bimodule ([6]). Let u1,us € V* and n € N such that
lpurly = ur, lpugly, = ug. We denote uy + JiugJy by (uq, uQ)g For any v € V
and an n € N with 1,v1, = v we denote InvJy + Jiv*I, by san(v).

Before we define F-Riesz norm, we need the following reformulation of the concept
that VT is generating.

Proposition 2.4. Let (V,V+) be a non-degenerate ordered F-bimodule. Then
VT is generating if and only if for every v € V there exist uj,us € VT such that
(u1,u2) + san(v) € V1, for a suitable n € N.

Note. In the notation (u1,us); + san(v) € V¥, we say that n € N is “suitable”
provided 1puily, = uy, lpugly, = wo and 1pv1l, = v. This terminology will be
used throughout the paper without any further explanation.

PRrROOF: First, let VT be generating. Let v € Vgq. Then by [6, Theorem 3.10]
there exist v1,vs € VT such that v = v; — va. Put u = v; + vo. Then u € V*
and u v € V. Next let v € V be arbitrary. Find an n € N such that
1pvl, = v. Consider san(v): sap(v) = Ipvdp + Jiv* I, € Vsq. Then as above
there exists a u € V1 such that u & sa,(v) € V1. Let u = Dyuly, € V. Then
U £ san(v) € VT for Iopsan(v)lzn = san(v). Set up = Ly Ly, ug = Jou' JE.
Then (uy, UQ): = L' I, + gy (Jnu/J;kL) Jn. We show that (up, UQ): =+ sap(v) €

V+. Note that

(1) Inu'ly, — Inu' T Ty — JE o Iy + T Jptd T T F san,(v)
z%—ﬁhwdimmﬂm—ﬁhme

Similarly

(2)  Int' Iy + Lyw JE J + JEJp Iy + 5 Tt T T & san (v)
:m+QMWJimm0m+ﬁhmvf

Adding (1) and (2) suitably, we get

(ul,u2);|; + san(v) = Inulln +J; (Jnu/JfL) Jn % san(v) € VT,
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Conversely assume that for every v € V there exist uj,us € V' such that
(u1,u2) + san(v) € V*, for a suitable n € N. We show that V1 is generat-
ing. Let v € V. Then there exist u1,us € V1 such that (’U,l,’U,Q): + sap(v) € VT,
for a suitable n € N. Therefore

(In + Jn) ((ul,ug)g + san(v)> (In+J5) e V*.
This gives uj + ug & (v +v*) € V', Similarly
(I + i) (1, u2)f £ s0a(v)) (I = i) € V'

which gives uy + ug £i (v —v*) € V. Put

UUZE(U1+U2+U+W*),
v = g (g — i~ o)),
0223(U1+UQ—U—11*),
vg:%(u1+u2+i(v—v*)).

Then vg, v1,v2,v3 € VT and we have
vy + U1 — vg — vy = 0.

Hence V1 is generating. (]

Definition 2.5. Let (V,V+) be a positively generated non-degenerate ordered
F-bimodule. Let ||-|| be an F-bimodule norm on V. We say ||-|| is an F-Riesz
norm on V if for any v € V,
o]l = inf {max(||ur ||, uzll) | (w1, u2)y + san(v) € VT
for some up,us € VT and a suitable N € N}.

In what follows we characterize F-Riesz norms on a non-degenerate positively
ordered F-bimodule in the lines of Theorem 2.2.

Definition 2.6. Let (V, V") be an ordered F-bimodule and A C V*. We define
S (A) as follows:
S(A) ={veV|(u,u)k £say(v) e VT
for some wuj,us € A and a suitable N € N}.
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Remarks.

(a) ACS(A).
(b) v* € §(A) whenever v € S(A).

Definition 2.7. Let A C V1. Then we say that A is order absolutely F-convex
if Ele ajujo; € A whenever uy,ug,...,u; € A and aj,ag,...,qp € F with

S o] < 1.

If the above condition holds only for & = 1 for some A C V7T, then we say A is
order F-circled.

Definition 2.8. S C V7 is called F-absorbing if for each v € V there exist
a, B € F such that avs € S.

Definition 2.9. S C VT is called positively F-absorbing if for each u € V1 there
exists a a € F such that o*ua € S.

Lemma 2.10. Let A C VT be order absolutely F-convex. Then S(A) is abso-
lutely F-convex.

ProoOF: Let vy,v9,...,v; € S(A) and let ay,a9,...,ak, 01,02, .., 0, € F with

le ;]2 < 1 and Zle 8> < 1. Then for each i = 1,2,...,k there ex-
ist N; € N, uj,uly € A with Inv1y, = v, Iyuily, = uf, Iyully, = uf
with (ui,ué)jvl + say,(v;) € VT. Now ai,ag,...,ap € F. Therefore there
exist My, Ma,..., My € N such that 1pr041p, = o4, @ = 1,2,...,k. Also
B1,82,..., B8, € F. Therefore there exist P, P, ..., P, € Nsuch that 1p,8;1p, =
Bi,1=1,2,...,k. Let N = maX{Nl,NQ,...,Nk,Ml,...,Mk,Pl,...,Pk}. Then

for each i = 1,2,...,k we have (ui,ué)j{, + san(v;) € VT. Now

* . .
((a;,m)jv) ((ug,ug);isa]v(vi)) ((af,ﬁi);\r,) €Vt foralli = 1,2,... k.
This means (aiuiaf,ﬁjuéﬁi)j\, + say (av;3;) € V' for each i = 1,2,... k.

. . +
Adding (Z?:l auf o, Zle B by i>N + say (Zle aiviﬁi) € V*t. Since A is
absolutely convex and Zle lla;]|? < 1 and Zle 18il1? < 1 we have
Zle aiu’ia: € Aand Z?:l BubB; € A. Therefore Z?:l a;v;3; € S(A). There-
fore S(A) is absolutely F-convex. O

Lemma 2.11. Let VT be generating. Then S(A) is F-absorbing if A C V7T is
positively F-absorbing.

Proor: Let A C VT be positively F-absorbing. Let v € V. Since V7T is
generating, by Proposition 2.4, there exist u,us € VT and a suitable N € N
such that (Ul,UQ)E + say(v) € VT. Since A is positively F-absorbing and
ut,us € V1 there exist o, 3 € F such that a*uija € A, 8*us8 € A. Find
M € N such that 1;uily = wy, ypuslys = ue, 1pyvly = v, 1yalpy = o,
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1081 = B. Then ((a,ﬁ)lt,)* ((ul,ug);\r/j + saM(v)> (a,ﬁ)lt, € V*t. This gives
(a*uya, 6*u26)}|\'/1 + sapr(a*vB) € V. Since a*uja € A and f*usf € A, we get
a*vf € S(A). Hence S(A) is F-absorbing. O

Some more concepts will be needed in the sequel.

Definition 2.12. Let A C V1. Ais called positively bounded if for any v € Vsq,
v+ kpan € VT for all n € N implies v € V1, where {a,} is a sequence in A and
{kn} is a sequence in (0, 00) with inf &, = 0.

Definition 2.13. Let A C V1. A is called almost positively bounded if
(knuft, knug)j\}n + say, (v) € VT for all n € N implies v = 0 where {u]'}, {u})
are sequences in A and {ky,} is a sequence in (0,00) with infk, = 0, {N,} is a
sequence in N.

Lemma 2.14. Let VT be proper. Let A C VT be order absolutely F-convex
and positively bounded. Then A is almost positively bounded.

Proor: Let v € V, sequences {u]}, {u5} be in A, {kn} be a sequence in (0, c0)
with inf &, = 0 and { Ny} be a sequence in N such that

Zn,, = (knu?, knug)?\}n +say, (v) € VT
for all n € N. Then
(1) (In, + JIN,) ZN, (N, + IN,)" = knul + kpul £ (v + 0%)
and
(2) (In, +iJN,) ZN, (IN, +iIN,)" = knul + kpub £i (v —0¥).

Put v} + uf = 2uy, for all n € N. From (1) and (2) we get
(3) kpun + Re(v), kpup +Im(v) € V.

Since A is convex as it is order absolutely F-convex, u, € A for all n € N. As
A is positively bounded, from (3) we get £ Rev, £Imwv € V1. Finally as V1 is
proper, we have Rev = 0, Imv = 0. That is v = 0. Hence A is almost positively
bounded. (I

Remark. It may be noted that the notion of (almost-)positively bounded sets is
introduced to generalize the notion of (almost-) Archimedean property of the cone

([5))-

Now we are in a position to characterize F-Riesz norms.



Direct limit of matricially Riesz normed spaces

Theorem 2.15. Let (V, V+) be a non-degenerate positively generated ordered
F-bimodule. Let AC V7T be order absolutely F-convex, almost positively bounded
and positively F-absorbing. Also assume that S(A) N VT = A. Let p(-) be the
gauge of S(A). Then p(-) is an F-Riesz norm on V.

Conversely, let ||-|| be an F-Riesz norm on V where (V, V1) is a positively
generated ordered F-bimodule. Also let UT = {v € VT | |v|| < 1} =UN VT,
where U is the open unit ball of (V, ||-||). Then U™ is order absolutely F-convex,
almost positively bounded and positively F-absorbing.

ProoOF: First assume that (V, V+) is a non-degenerate positively generated or-
dered F-bimodule. Let A C VT be order absolutely F-convex, almost positively
bounded and positively F-absorbing. Also assume that S(A) N VT = A. Let p(-)
be the gauge of S(A). We show that p(-) is an F-Riesz norm on V. In the light
of Theorem 2.3, Lemmas 2.10 and 2.11 we note that p(-) is a F-semi-norm on V.
Let v € V. We show that

p(v) = inf{max(p(u1), p(uz)) | (w1, uz)} + san(v) € V*
for some uy,us € VT and a suitable N € N}.

Since S(A) is F-absorbing there exists some A > 0 such that Av € S(A). This
gives some uy,u9 € A and a N € N such that (ul,ug)fv:tsa]v()\v) € Vt. That is
(z\‘lul,)\_lm);\rf + san(v) € V1. Also p(A™luy) = A" !p(uy). Since p(-) is the
gauge of S(A) and S(A) N VT = A, we have p(u1) < 1 and p(uz) < 1. Therefore
p(Alug) < A7L p(A"tug) < A7L That is max{p(A " uy), p(A"lug)} < AL
Let € > 0. Then (p(v) +¢)~'v € S(A). Replacing A by (p(v) + €) in the above
discussion, there exist uq,us € VT and some N € N such that (ul,u2)j\} +
san(Av) € VT and max{p(u1),p(uz)} < (p(v) + €). That is,

p(v) > inf{max(p(u1), p(uz)) | (w1, uz)§ + san(v) € V*
for some uy,us € VT and a suitable N € N}.

Let ui,us € VT and (ul,uQ)]J\“, + san(v) € VT for some N € N. Find a A > 0
such that Auj, Aug € S(A). This gives ()\ul,)\UQ)?\} + say (M) € V*t. Since
S(A)NVT = A, we get Auq, M\ug € A. That is v € S(A). Therefore p(v) < AL
Let € > 0. Put A\ = (max{p(u1),p(u2)} + €)~1. Then \uj, \us € S(A) so that
p(v) < max{p(uy1),p(uz)} + €. This gives

p(v) < inf{max(p(u1), p(uz)) | (w1, uz)§ + san(v) € VF
for some uy,us € VT and a suitable N € N}.

Therefore p(-) is F-Riesz semi-norm on V. Now let v € V be such that p(v) = 0.
Then there is a sequence {ky} in (0, 00) with inf k, = 0 such that k; 'v € S(A).
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Thus for every n € N, there exist u7', u € A such that (u}, ug)fvn +sap, (ko) €

V1 for suitable N,, € N. This means that (knu?, knug) X,n +sap, (v) € VT. Since
A is almost positively bounded, we get v = 0. Hence p(-) is an F-Riesz norm
on V.

Conversely, let ||| be an F-Riesz norm on V where (V,V7T) is a positively
generated ordered F-bimodule. Also let Ut = {v € V't | v|| < 1} =UN VT,
where U is the open unit ball of (V,|-]|). We show that T is order absolutely
JF-convex, almost positively bounded and positively F-absorbing.

Let w € Y. Find an € > 0 such that ||u|| + € < 1. Since |-|| is an F-Riesz norm
there exist w1, us € V1, a suitable N € N such that (ul,uQ)]J\“, + say(u) € VT
and max{||u1], |lug|} < |lull + € < 1. That is ||u1|| < 1, ||ug|| < 1. This means
uy1,up € UT. That is u € S(A). Thus U C S(UT). Let v € S(UT). Then there
exist uj,up € U and a suitable N € N such that (ul,u2,)]+v + say(v) € V.

Since ||-|| is an F-Riesz norm, we have ||v]| < max{]|ju1|, ||uz]|} < 1. Therefore
v €U or SUT) C U. Therefore S(UT) = U. Next, let uy,us9,...,u; € UT and
at,a9,...,qp € F with Zle Ha:aiH <1. Putu= Zle aju;a;. Then u € V
and

k k
2 2
ol <> el Jluill < D e < 1.
i=1 i=1

It follows U™ is order absolutely F-convex. We now prove that U is almost

positively bounded. Let v € V and sequences {u]}, {u}} be in U and {ky} in
(0,00) with infk, = 0 and {N,} a sequence in N such that (knu?,knug)j\}n +
sap, (v) € VT for all n € N. We show that |lv|| = 0. Let e > 0. Since infk, =0
there exists a ng € N such that kp, < e. As ||| is an F-Riesz norm and Hu?o H <1,

lus?]| < 1, we have ||v]| < max{|[knoul®||, ||knous°||} < kny < €. Since e > 0

is arbitrary, ||v|| = 0. Since ||-|| is a norm, v = 0. Hence U™ is almost-positively
bounded. Finally, let v € VT and e > 0. Put a = (||v|| -I-e)_%ln where 1,01, = v.
Then o*va = mlnvln = (||vﬁ’+e) € UT. Therefore U is positively F-
absorbing. O

Theorem 2.16. Let (V, V") be a non-degenerate ordered F-bimodule. Let VT
be proper and generating. Let A C VT be order absolutely F-convex, positively
bounded and F-absorbing. Assume that S(A) N V* = A. Let p(-) be the gauge
of S(A). Then p(-) is an F-Riesz norm on V such that V1 is p-closed.

Conversely, let (V,VT) be an ordered F-bimodule and VT be generating. Let
|-l be an F-Riesz norm on V such that V7 is closed. Let Ut = {v € VT | |]v] <
1}. Then UT is order absolutely F-convex, positively bounded and positively
F-absorbing such that SUT) NV =UT. Moreover V7 is proper.

ProOF: First assume that V71 is proper and generating. Let A C V1 be order
absolutely F-convex, positively bounded and F-absorbing. Assume that S(A) N
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Y+ = A. Let p(-) be the gauge of S(A). We show that p(-) is an F-Riesz norm
on VT such that V1 is p-closed. In the light of Lemma 2.14 and Theorem 2.15
it suffices to prove that VT is p-closed. We shall show that Vsq\V7T is p-open.
Define for v € Vgq,

r(v) =inf{a € R |v+aa €Vt for some a€ A}.

We first show that r(v) < 0 if and only if v € V. Let v € V. Then v+0a € VT
for all @ € A. That is r(v) < 0. To show the other way let r(v) < 0. Then
for every n € N there exists an a, € A such that v + (r(v) + %)an e vt
Also v + (r(v) + %)an < v+ (%)an as r(v) < 0. That is v + (%)an e vt
for every n € N. As A is positively bounded, v € V*. We now show that
p(v) —r(v) > 0 for all v € Vsq. Suppose p(v) — r(v) < 0 for some v € Vgq,.
Put € = %(r(v) — p(v)) > 0. Since p(-) is F-Riesz norm on V, there exists an
a € A such that (p(v) + €)a £v € VT. Then (r(v) — €)a £ v € V. In particular
(r(v) — €)a+v € V*. This contradicts the definition of r(v). Thus p(v) > r(v)
for all v € Vgq. Finally we show that Vsa\V+ is p-open. Let v € Vgq, v ¢ yt.
Since v ¢ V¥, r(v) > 0. Let § = %T‘(’U). Let D = {w € Vyq | p(v —w) < 6}
Let w € D. Then 6 > p(v — w) > r(v — w). So there exists an a € A such that
da+ (v—w) € VT. Ifw e VT, then §a+v € V. Thus r(v) <6 = @, which is
a contradiction. Therefore w ¢ V. That is Vsq\V T is p-open.

For the converse it suffices to prove that U is positively bounded and that
VT is proper in light of Theorem 2.15. We show that U™ is positively bounded.
Let v € VT and wy, = v + kpuy, € VT for all n € N, where {u,} is a sequence in
UT and {ky} is a sequence in (0, 00) with inf k,, = 0. Without loss of generality
we can take {ky} to be decreasing. Now {wy} is a convergent sequence because
lv — wn|| = ||knun| < kn — 0. Therefore w,, — v. Since V7 is closed, v € V.
Therefore YT is positively bounded.

Finally we show that V7T is proper. Let v € V1. Then as v is self-adjoint,
llo| = inf{||lul| | v € VT, u+v € VT}. Also 0 € VT and 0 +v € VT. That is
lv]| < |0 = 0. That is v = 0. Therefore V7 is proper. O

Now we move to the final result of the paper.

Definition 2.17 (F-Riesz normed bimodule). Let (V,VT) be a non-degenerate
ordered F-bimodule such that V' is proper and generating. Assume that |- is
an F-Riesz norm on V such that VT is norm closed. Then the triple (V, VT, -|[)
is called an F-Riesz normed bimodule.

Definition 2.18 (Matricially Riesz normed space). Let (V,{My(V)T}) be a po-
sitively generated matrix ordered space and suppose that {|-||,,} is a matrix norm
on V. Then the triplet (V,{||,,},{Mn(V)T}) is called a matricially normed
space if for each n € N, [|-]|,, is a Riesz norm on M, (V) and M, (V)" is closed.

65
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Theorem 2.19. Let (V,{M,(V)"} {|||l,}) be a matricially Riesz normed
space. Let (V, V1) be the matricial inductive limit of the matrix ordered space
(V,{Mn(V)*}) and let (V, ||||) be the matricial inductive limit of matrix normed
space (V,{||'|,,}). Then (V,VT,]|-||) is a non-degenerate F-Riesz normed bimod-
ule. Conversely, let (W, W™, ||-||) be a non-degenerate F-Riesz normed bimodule.
Let W = 1;W1y and Mp(W)T = 1,WT 1, and |-, = || |ng, (W) for all n € N.
Then (W, {Mp,(W)*} {|[ll,,}) is a matricially Riesz normed space whose induc-
tive limit is (W, W™, |-])).

Proor: Let (V,{Mn(V)*},{|ll,,}) be a matricially Riesz normed space. We
show that ||| is an F-Riesz norm on V. Let v € V. Then there exists a smallest
n € N such that 1,v1,, = v. Then

loll = l[vll,, = inf{max({fur[l, , [uzll,) | (w1, u2)f & san(v) € Man(V)*
for some w1, uy € My (V)"}.

Let
p(v) = inf{max(|lu |, [Juzl|) | (u1,u2)} + san(v) € V*

for some uy,us € VT and a suitable N € N},

Then p(v) < ||v||. Let e > 0. Then there exist uj,us € V¥, N € N such that
(u1,u2) % £ san(v) € V1 and max(||lu1], |luz|) < p(v) + €. In this case N > n.
Put ull = 1lpuiln, u; = 1,u9l,. Then ull,u/2 € M,(V)T. Also

/

((Iny 1)) [(ul, up)ly + saN(v)] ((Iny 1)) = (uy, un)y & san(v) € Moy (V)T

as 1pvly, = v. Next Hu;Hn < Ju ||,

u2H < |luz| so that
n

’ ’
ol = loll, < mas(([ur | s )< max(lunl, fusl) < p) +c.
Since € > 0 is arbitrary, [[v|| < p(v). Therefore p(v) = [|v||. Hence ||| is an
F-Riesz norm on V. We show that VT is ||| closed. Let v € Vt. Then there
exists a sequence {v,} C V7T such that v, — v in |-||. Hence v € Vsq. Find an

n € N such that 1,v1, = v. Then U;C = lyvily — 1pvly, = v in ||+],,. Since
M, (V)T is closed, we have v € M, (V)T C VT. Therefore VT is closed.

For the converse it is enough to show that ||-||,, is a Riesz norm on M, (W) for
all n € N. Fix an n € N and w € My, (W). Let

r(w) = inf{max(||usl,, , uzll,)) | (u1, ug);} + san(w) € Man(W)*
for some uy,up € My (W)™},
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Recall that

[wll,, = lwl| = inf {max(|ur |, [fuz]]) | (u1,u2) 3 + san(w) € WF
for some wui,us € W and a suitable N € N}.

Then |Jw||,, < r(w). Let e > 0. Then as above using (1, 1,);}, we may conclude
that r(w) < [|wl|,, + €. Therefore r(w) = ||w]||,,- That is [-]|,, is a Riesz norm on

Myp(W). Also Mp(W)* is |-, closed. O
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