Previous |  Up |  Next

Article

Keywords:
modes (idempotent and entropic algebras); cancellative modes; sums of algebras; embeddings; semimodules over semirings; idempotent subreducts of semimodules
Summary:
Medial modes, a natural generalization of normal bands, were investigated by P\l onka. Rectangular algebras, a generalization of rectangular bands (diagonal modes) were investigated by Pöschel and Reichel. In this paper we show that each medial mode embeds as a subreduct into a semimodule over a certain ring, and that a similar theorem holds for each Lallement sum of cancellative modes over a medial mode. Similar results are obtained for rectangular algebras. The paper generalizes earlier results of A. Romanowska, J.D.H. Smith and A. Zamojska-Dzienio.
References:
[1] Ježek J., Kepka T.: Medial Groupoids. Rozpravy ČSAV, Rada Mat. Přírod. Věd. 93 2 (1983), 93 pp. MR 0734873
[2] Kearnes K.: Semilattice modes I: the associated semiring. Algebra Universalis 34 (1995), 220-272. MR 1348951 | Zbl 0848.08005
[3] Kuras J.: Application of Agassiz Systems to Representation of Sums of Equationally Defined Classes of Algebras (in Polish). Ph.D. Thesis, M. Kopernik University, Toruń, 1985.
[4] Płonka J.: Diagonal algebras. Fund. Math. 58 (1966), 309-321. MR 0194378
[5] Płonka J.: On a method of construction of abstract algebra. Fund. Math. 61 (1967), 183-189. MR 0225701
[6] Płonka J.: A representation theorem for idempotent medial algebras. Fund. Math. 61 (1967), 191-198. MR 0225702
[7] Płonka J., Romanowska A.B.: Semilattice sums. in Universal Algebra and Quasigroup Theory (eds. A.B. Romanowska and J.D.H. Smith), Heldermann, Berlin, 1992, pp.123-158. MR 1191225
[8] Pöschel R., Reichel M.: Projection algebras and rectangular algebras. in General Algebra and Applications (eds. K. Denecke and H.-J. Vogel), Heldermann, Berlin, 1993, pp.180-194. MR 1209898
[9] Romanowska A.B., Smith J.D.H.: Modal Theory. Heldermann, Berlin, 1985. MR 0788695 | Zbl 0553.08001
[10] Romanowska A.B., Smith J.D.H.: Embedding sums of cancellative modes into functorial sums of affine spaces. in Unsolved Problems on Mathematics for the 21st Century, a Tribute to Kiyoshi Iseki's 80th Birthday (eds. J.M. Abe and S. Tanaka), IOS Press, Amsterdam, 2001, pp.127-139. MR 1896671 | Zbl 0989.08001
[11] Romanowska A.B., Smith J.D.H.: Modes. World Scientific, Singapore, 2002. MR 1932199 | Zbl 1060.08009
[12] Romanowska A.B.: Semi-affine modes and modals. Sci. Math. Jpn. 61 (2005), 159-194. MR 2111551 | Zbl 1067.08001
[13] Romanowska A.B., Traina S.: Algebraic quasi-orders and sums of algebras. Discuss. Math. Algebra Stochastic Methods 19 (1999), 239-263. MR 1709970 | Zbl 0949.08001
[14] Romanowska A.B., Zamojska-Dzienio A.: Embedding semilattice sums of cancellative modes into semimodules. Contributions to General Algebra 13 (2001), 295-304. MR 1854593 | Zbl 0993.08004
[15] Romanowska A.B., Zamojska-Dzienio A.: Embedding sums of cancellative modes into semimodules. Czechoslovak Math. J. 55 4 (2005), 975-991. MR 2184378 | Zbl 1081.08003
[16] Zamojska-Dzienio A.: Embedding modes into semimodules (in English). Ph.D. Thesis, Warsaw University of Technology, Warszawa, 2003.
Partner of
EuDML logo