Previous |  Up |  Next

Article

Keywords:
semilattice; lattice; distributive; dimension group; direct limit
Summary:
We construct a countable chain of Boolean semilattices, with all inclusion maps preserving the join and the bounds, whose union cannot be represented as the maximal semilattice quotient of the positive cone of any dimension group. We also construct a similar example with a countable chain of strongly distributive bounded semilattices. This solves a problem of F. Wehrung.
References:
[1] Bergman G.M.: Von Neumann regular rings with tailor-made ideal lattices. unpublished notes, October 1986.
[2] Effros E.G., Handelman D.E., Shen C.-L.: Dimension groups and their affine representations. Amer. J. Math. 120 (1980), 385-407. MR 0564479 | Zbl 0457.46047
[3] Goodearl K.R.: Von Neumann Regular Rings. Pitman, London, 1979, xvii + 369 pp. MR 0533669 | Zbl 0841.16008
[4] Goodearl K.R.: Partially Ordered Abelian Groups with Interpolation. Math. Surveys and Monographs, Vol. 20, Amer. Math. Soc., Providence, R.I., 1986, xxii + 336 pp. MR 0845783 | Zbl 0589.06008
[5] Goodearl K.R., Handelman D.E.: Tensor product of dimension groups and $K_0$ of unit-regular rings. Canad. J. Math. 38 3 (1986), 633-658. MR 0845669
[6] Goodearl K.R., Wehrung F.: Representations of distributive semilattice in ideal lattices of various algebraic structures. Algebra Universalis 45 (2001), 71-102. MR 1809858
[7] Grätzer G.: General Lattice Theory. second edition, Birkhäuser, Basel, 1998, xix + 663 pp. MR 1670580
[8] Růžička P.: A distributive semilattice not isomorphic to the maximal semilattice quotient of the positive cone of any dimension group. J. Algebra 268 (2003), 290-300. MR 2005289 | Zbl 1025.06003
[9] Schmidt E.T.: Zur Charakterisierung der Kongruenzverbände der Verbände. Mat. Časopis Sloven. Akad. Vied 18 (1968), 3-20. MR 0241335
[10] Wehrung F.: A uniform refinement property for congruence lattices. Proc. Amer. Math. Soc. 127 (1999), 363-370. MR 1468207 | Zbl 0902.06006
[11] Wehrung F.: Representation of algebraic distributive lattices with $\aleph_1$ compact elements as ideal lattices of regular rings. Publ. Mat. (Barcelona) 44 (2000), 419-435. MR 1800815 | Zbl 0989.16010
[12] Wehrung F.: Semilattices of finitely generated ideals of exchange rings with finite stable rank. Trans. Amer. Math. Soc. 356 5 (2004), 1957-1970. MR 2031048 | Zbl 1034.06007
[13] Wehrung F.: Forcing extensions of partial lattices. J. Algebra 262 1 (2003), 127-193. MR 1970805 | Zbl 1030.03039
Partner of
EuDML logo