[1] Bergman G.M.: Von Neumann regular rings with tailor-made ideal lattices. unpublished notes, October 1986.
[2] Effros E.G., Handelman D.E., Shen C.-L.:
Dimension groups and their affine representations. Amer. J. Math. 120 (1980), 385-407.
MR 0564479 |
Zbl 0457.46047
[4] Goodearl K.R.:
Partially Ordered Abelian Groups with Interpolation. Math. Surveys and Monographs, Vol. 20, Amer. Math. Soc., Providence, R.I., 1986, xxii + 336 pp.
MR 0845783 |
Zbl 0589.06008
[5] Goodearl K.R., Handelman D.E.:
Tensor product of dimension groups and $K_0$ of unit-regular rings. Canad. J. Math. 38 3 (1986), 633-658.
MR 0845669
[6] Goodearl K.R., Wehrung F.:
Representations of distributive semilattice in ideal lattices of various algebraic structures. Algebra Universalis 45 (2001), 71-102.
MR 1809858
[7] Grätzer G.:
General Lattice Theory. second edition, Birkhäuser, Basel, 1998, xix + 663 pp.
MR 1670580
[8] Růžička P.:
A distributive semilattice not isomorphic to the maximal semilattice quotient of the positive cone of any dimension group. J. Algebra 268 (2003), 290-300.
MR 2005289 |
Zbl 1025.06003
[9] Schmidt E.T.:
Zur Charakterisierung der Kongruenzverbände der Verbände. Mat. Časopis Sloven. Akad. Vied 18 (1968), 3-20.
MR 0241335
[10] Wehrung F.:
A uniform refinement property for congruence lattices. Proc. Amer. Math. Soc. 127 (1999), 363-370.
MR 1468207 |
Zbl 0902.06006
[11] Wehrung F.:
Representation of algebraic distributive lattices with $\aleph_1$ compact elements as ideal lattices of regular rings. Publ. Mat. (Barcelona) 44 (2000), 419-435.
MR 1800815 |
Zbl 0989.16010
[12] Wehrung F.:
Semilattices of finitely generated ideals of exchange rings with finite stable rank. Trans. Amer. Math. Soc. 356 5 (2004), 1957-1970.
MR 2031048 |
Zbl 1034.06007