Previous |  Up |  Next

Article

Keywords:
elliptic equations; {\it VMO\/}-coefficients
Summary:
In this paper an existence and uniqueness theorem for the Dirichlet problem in $W^{2,p}$ for second order linear elliptic equations in the plane is proved. The leading coefficients are assumed here to be of class {\it VMO\/}.
References:
[1] Astala K., Iwaniec T., Martin G.: Pucci's conjecture and the Alexandrov inequality for elliptic PDEs in the plane. to appear. Zbl 1147.35021
[2] Caso L., Cavaliere P., Transirico M.: Uniqueness results for elliptic equations with VMO-coefficients. Int. J. Pure Appl. Math. 13 (2004), 499-512. MR 2068723
[3] Caso L., Cavaliere P., Transirico M.: An existence result for elliptic equations with VMO-coefficients. J. Math. Anal. Appl., to appear. MR 2270071 | Zbl 1152.35025
[4] Chiarenza F., Frasca M., Longo P.: Interior $W^{2,p}$ estimates for non divergence elliptic equations with discontinuous coefficients. Ricerche Mat. 40 (1991), 149-168. MR 1191890
[5] Chiarenza F., Frasca M., Longo P.: $W^{2,p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients. Trans. Amer. Math. Soc. 336 (1993), 841-853. MR 1088476
[6] Glushak A.V., Transirico M., Troisi M.: Teoremi di immersione ed equazioni ellittiche in aperti non limitati. Rend. Mat. Appl. (7) 9 (1989), 113-130. MR 1044521
[7] Maugeri A., Palagachev D.K., Softova L.G.: Elliptic and Parabolic Equations with Discontinuous Coefficients. Wiley, Berlin, 2000. MR 2260015 | Zbl 0958.35002
[8] Pucci C.: Equazioni ellittiche con soluzioni in $W^{2,p}$, $p< 2$. Atti del Convegno sulle Equazioni alle Derivate Parziali (Bologna, 1967), pp.145-148; MR42-6413. MR 0271530
[9] Talenti G.: Equazioni lineari ellittiche in due variabili. Matematiche (Catania) 21 (1966), 339-376. MR 0204845 | Zbl 0149.07402
[10] Transirico M., Troisi M., Vitolo A.: BMO spaces on domains of $\Bbb R^n$. Ricerche Mat. 45 (1996), 355-378. MR 1776414
[11] Vitanza C.: $W^{2,p}$-regularity for a class of elliptic second order equations with discontinuous coefficients. Matematiche (Catania) 47 (1992), 177-186. MR 1229461
[12] Vitanza C.: A new contribution to the $W^{2,p}$-regularity for a class of elliptic second order equations with discontinuous coefficients. Matematiche (Catania) 48 (1993), 287-296. MR 1320669
Partner of
EuDML logo