Previous |  Up |  Next

Article

Keywords:
$I$-density point; family of topologies
Summary:
We investigate a family of topologies introduced similarly as the $I$-density topology. In particular, we compare these topologies with respect to inclusion and we look for conditions under which these topologies are identical.
References:
[FFH] Filipczak M., Filipczak T., Hejduk J.: On the comparison of the density type topologies. Atti Sem. Mat. Fis. Univ. Modena, to appear. MR 2151082 | Zbl 1117.54002
[FH] Filipczak M., Hejduk J.: On topologies associated with the Lebesgue measure. Tatra Mountains, Mathematical Publications 28 (2004), 187-197. MR 2086991 | Zbl 1107.54003
[HH] Hejduk J., Horbaczewska G.: On $I$-density topologies with respect to a fixed sequence. Reports on Real Analysis, Conference at Rowy 2003, pp.78-85.
[H] Horbaczewska G.: On $I$-density topologies with respect to a fixed sequence - further properties. Tatra Mountains, Mathematical Publications, to appear. MR 2287251 | Zbl 1135.54002
[Ł] Łazarow E.: On the Baire class of $I$-approximate derivatives. Proc. Amer. Math. Soc. 100 4 (1987), 669-674. MR 0894436
[PWW1] Poreda W., Wagner-Bojakowska E., Wilczyński W.: A category analogue of the density topology. Fund. Math. 125 (1985), 167-173. MR 0813753
[PWW2] Poreda W., Wagner-Bojakowska E., Wilczyński W.: Remarks on $I$-density and $I$-approximately continuous functions. Comment. Math. Univ. Carolinae 26 3 (1985), 241-265. MR 0817826
Partner of
EuDML logo