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The family of /-density type topologies

GRAZYNA HORBACZEWSKA

Abstract. We investigate a family of topologies introduced similarly as the I-density
topology. In particular, we compare these topologies with respect to inclusion and we
look for conditions under which these topologies are identical.

Keywords: I-density point, family of topologies
Classification: 54A10

We use here a standard notation. Let N be the set of all positive integers, B
the family of subsets of the real line having the Baire property and I the o-ideal
of meager sets. For every set A and z,t € R, we set A+ = {a+ z;a € A} and
t-A={t-a;a € A}, where x4 is the characteristic function of A and A’ the
complement of A.

Let S be the family of all nondecreasing and unbounded sequences of positive
real numbers. Every sequence {sp}ncn € S is denoted by (s).

Let us recall the notion of an I-density point of a set A € B ([PWW1]). The
point 0 is an I-density point of a set A € B if for every sequence {tp}nen € S
there exists a subsequence {tp,}pen such that X(tnp'A)m[_lvl}pjo)ol I-a.e. on
—1,1].

Based on the observation that starting from another fixed sequence different
results can be obtained, the notion of an I-density point connected with a fixed
sequence from the family S has been introduced in [HH].

Definition 1. Let (s) € S. The point 0 is an (s)-I-density point of a set A € B
if for every subsequence {sn,, }men C (s) there exists a subsequence {sn,, }pen
such that XSy -ANI-11] ;520 1 I-a.e. on [—1,1].

A point z € R is an (s)-I-density point of A if 0 is an (s)-I-density point of
the set A — x.
A point z € R is an (s)-I-dispersion point of A if = is an (s)-I-density point
of A’.
We can define one-sided (s)-I-density points in the natural way.
For any (s) € S and A € B, putting
P4y 7(A) = {z € R;z is an (s)-I-density point of A}

s
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we get that @7 : B — B is a lower density operator (see [HH]).

Applying this operator we define for every fixed sequence (s) the topology
T = {A € B; A C @(41(A)}, which fulfils the inclusion: 7 C Ty, where 77
denotes the I-density topology ([HH]).

The main aim of this paper is to compare topologies connected with different
sequences.

First of all, if (s) is the sequence of all natural numbers then Tio; = 71

([PWW1)).
Now we state the main results.
Let So = {(s) € S : liminfp o0 5% = 0}.

Theorem 1. Let (s) € S. Then T(y; = 71 if and only if (s) € S\ So.

Theorem 2. Let (s), (t) € So and limm—oo 2 = a € (0,+00). Then Ty =
Tyyy if and only if o = 1.
Before presenting the proofs we need some properties of our topologies.
Properties.
(1) Let (s),(t) € S. Then Tiy; = Ty if and only if @y1(A) = @(y7(A) for
every A € 5.
(2) Let (s) € S and 1 < o < 0o. Then Tigyr C Tiy5yy, where (as) = {asn}tnen.
(3) Let (s) € S. Then for an arbitrary subsequence (s') C (s) we have
7 C Tiang.
() = (")
(4) Let (s) € S. If for any subsequence of the sequence of all natural numbers
(n'y C {n},en there exists a subsequence (n") C (n') such that
'T< i C'T< "Is thenT( VI Cc7;.
(5) V(s) €S Vo eR VAeB (AT = Atz €Ty
(6) V(s) €S VAeB (A€ Ty = —A€Ty).
(1) V(s) €S Vim[>21 VAeB (A€eT iy = m-A€Ty).
(8) V(s) €So FA€B V|m| <1 (AT Am-A¢Tyi).

5

The first four are simple consequences of the definitions and properties of lower
densities. We want only to show one implication from (1) (the inverse is obvious).

PROOF OF (1): Let (s), () € S. We assume that 7,7 = T(;y; and there ex1sts a
set A € B such that @ y7(A4) # @7 (A), for example @ I( ¢ <I> . Since
@y 7(A) € Tyyr =T >I,bydeﬁn1t10nof7< )7 We have@ I(A) (<I><t>I(A))
which is equal to @, (A) because @ 7(A) is equlvalent to A (the Lebesgue
Density Theorem works here), so we get a contradiction. O

The next four properties have been already published ([HH], [H]). A justifica-
tion of (5)—(7) is again easy so we can omit it. We want only to sketch the proof
of the last one.
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PROOF OF (8): Let (s) € Sp. Then there exists a subsequence {sp, }rcry of (s)

such that limy,_, Ss"il =0

Put X = U] 1[sn ey 13n +1], Then 0 is an (s)-I-dispersion point of a

set X. Defining Y = —X UX we have A={0tUR\Y) €Ty

For m = 0 it is obvious that m - A ¢ 77

Now we want to show that 0 is not a right (s)-7-dispersion point of the set m-X
for m € (—=1,1) \ {0}. There is no loss of generality in assuming that m € (0,1).

We can find kg € N such that for any k > ko we have ,/ ssn’jrl < m. Then 0 is not
7Lk

. . . . () 1 1 ;
a right (s)-I-dispersion point of the set m - j=ko[snj+1’ \/Snj'Sanrl]’ so neither
of the set m - X. Hence m- A= {0} U(R\m-Y) ¢ T/

For details see [HH]. O

PRrROOF OF THEOREM 1: Sufficiency. Since 77 C 71 for every sequence (s) € S,
it is enough to show the inclusion: 7y C 77.

Let (s) € S\ Sp. We denote liminfy_, Sijil by A, so A > 0.

Let (n’) = {n;}en denote an arbitrary sequence of natural numbers, (n’) € S.
Then there exists jo € N such that for each j > jo, j € N, there exists k; € N
which fulfils the condition Sk; < nj < Sg;4+1. There is no loss of generality in

assuming that jo = 1. Now we choose a subsequence {n;, };cn from the sequence
{n;j}jen such that each interval [Skjl , Skjl+1] contains only one term of the se-

quence {n;j, }jen. Since Skj, < Mgy < Skj41 for each | € N, we have

1< —<
Skjl Skjl
and
. n.: . Sk +1
1 < limsup —2& < lim sup —2%
l—o0 Skjl l—o0 Skjl
1
—1/11m1nf < 1/liminf = — < +o00.
l—o00 Sk; 1 k—oo Ski41 A
Therefore there exists a subsequence { }pEN C { /4 } e tending to a, where
"
1 < a < oo. Then limp— 10 # =1 Usmg the notation:
lp

<n”> = {njzp }peN and <5”> = {Skjlp }peN
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we obtain (by Theorem 2, which will be proved later) the equality of topologies
Ty = Tiasmy1-
Furthermore, by Properties (2) and (3), we have
Tiyr © Tisyr © Tigmyr © Tiasryr = Ty

Property (4) now yields Tisyr C 71 which is the desired conclusion. O

Necessity of the condition (s) € S\ Sp has been already stated in [HH]. We
repeat here the proof. We want to show that if (s) € Sy then Tior ¢ T;.

From our assumption there exists a subsequence {spn, }keny C {Sn}nen such

Sny Sny .
that limy o0 5- = 0. We can assume that the sequence {smc+1 tren is de-
creasing (if necessary we can choose a subsequence).
Let
o0
U 1
j=1 S”J+1 " Snj+

We will show that 0 is a right (s)-I-dispersion point of the set A, it means that for

each subsequence {sn,, }men C {sn}nen there exists a subsequence {sy,,, }pen

such that x(s, .4)n[, 1,°% 07-a.e.on [0,1]. Let j(I) = min{j € N: [ < n;+1}.
mp

We observe that

(- U

J=1

1 1

)
Snj+1 Snp * Snj+1

)m[o,l]

>ﬂ[0,1]
)0[0,1]

Sn, .
no,1 ¢ [0, = "Jf"s’“ n1o,1]
Tj(nm) "~ “Mj(nm) 1

1 1

)
nj—l—l Snj : Snj—i-l

Jj= J(n
1

[ \/S"mm) 510 () +1

N

.
-

0,

|: \/ j(nm) nJ(nm)+1

0, [ ZRitnm) } [0, 1].
j(nm)+1

51 5(nm)
51 (nm ) +1

[0,1], so 0 is an (s)-I-dispersion point of the set A = —A U A.

Since lim sup,,, [0, | = {0}, we have X (s -A)N[0,1] 2 0 I-a.e. on
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Let B = (O,i)\A and B = —BUBU{0}. Then B € Tisy1- Of course
B=U (5

We will show that 0 is not a right I-density point of the set B, it means that
there exists a sequence {t}ren € S such that for each subsequence {ty, }pen C

{tktren, the convergence x(;, .p)n0,1] — 1 I a.e. does not hold. Let
4 7 p—oo
tk = \/5ns - Sni+1 for k € N. Observe that

(e B)N[0,1] = (ﬁg (== 1))y

3
Snj " Snj+1 Sn;

[o.¢]
1 1
Y Q— ) )nJo,1
(m U (W Sn]>) 01

j=k+1
/S S,
c (,/75%-‘5%4&- 0, - Dﬂ[o,l]c {0,’;’“7’”‘“ n1o,1]
Ng41 ngp+1
_ [o, e | Ao, 1].
Snk+1
E

Since lim supy [0, ] = {0}, we have x;,.pnp,1)(x) — 0 for z € (0,1].

Snp+1 k—oo

Therefore B ¢ T;. O

Corollary 1. For every sequence (s) € S\ So and for every sequence (t) € Sy,
Tior & Tinyr-

Now we can add one more property.

Corollary 2. For every sequence (s) € S\ So and for every m € R\ {0}, if
A S 725>I then m - A S 725>I.

For the proof of Theorem 2 we need two lemmas.

Lemma 1 ([PWW2]). Let A be an open set and let the sequences {in}neN
and {jn}nen have the following properties: in > 0, j, > 0 for each n € N,
limy— o0 tn = 400, limy— 00 Jn = 400, limy— % =1 and let

X(in-A)N[-1,1] 752 0 I-a.e. on [—1,1]. Then also X(j,.4)n[-1,1] Nwd 0 I-a.e. on
[-1,1].

In Lemma 2 we state an equivalent condition for being an (s)-I-dispersion point
of an open set. The idea was motivated by [L].

Lemma 2. Let (s) € S. The point 0 is a right-hand (s)-I-dispersion point of
an open set G if and only if, for every natural number n, there exist a natural
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number k and a real number § > 0 such that for each m € N such that % <6
and for each i € {1,...,n}, there exists a natural number j € {1, ..., k} such that

GnN ’_1_,_3;1 .ij Z—1+L i = (.
n nk Sm n nk Sm

PROOF: We shall first prove the necessity for (s)-I-dispersion. Assume that 0 is
a right-hand (s)-I-dispersion point of the open set G and suppose the assertion of
the lemma is false. Then we could find a natural number ng such that, for each
k € Nand §, = %, there exist my € N such that k < s, and i, € {1,...,n0}
such that, for each j € {1,...,k}

i,—1  j—1 1 i — 1 j 1
Gm((““ +‘7—>- , (’k +L>- );«é@.
no nok Smy, no nok Smy,

Since iy is chosen from a finite set, there exists a subsequence {Smkl}leN C

{8my fken such that the number i, is common for all I. For simplicity we denote
it by 79 and the chosen subsequence by {sm, }ren. Let {sm,_}.en be any subse-
quence of {sm, }ren. For every natural number p € N the set (J72,((smy, - G) N

(=L o)) is open and dense on [e=L 0] 5o

ng ’ng no ’ no
= ig—1 i
N U (emann )
p=1z=p "0 0
is residual on [%, fl—%]. Consequently
~ io—1 g
limZSU.p ((Smkz . G) M [_17 1]) D pOl zL—Jp ( (Smkz ' G) : |: no ’ n_0]> ¢ L

Hence there exists a sequence {sy,, }rcn such that for each subsequence
{smy., tzen C {8my }ken, limsup, ((sm,, - G) N[—1,1]) is a not a meager set. This
contradicts our assumption that 0 is an (s)-I-dispersion point of G.

Now assume that the condition from our lemma is true and our goal is to show
that 0 is a right-hand (s)-I-dispersion point of G.

Let {sm, }pen be an arbitrary subsequence of (s). The subsequence of
{sm, }pen will be defined by induction. For n = 1 there exist k1 € N and d1 > 0
such that for each m € N for which # < §1 and for ¢ = 1 there exists j =
J(sm,1) € {1,...,k1} such that
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Let {Smal(z)}zeN be a subsequence of {sm, }pen such that for each z € N we

have < 61 and the number j(sm,,

() 1) = j11 is common for all z € N.
May () 1
Put Smyp; = Smg, (1)

Assume the sequence {Sman,l(z)}zeN and sm, | = Sm, _ ) to be defined.

For a natural number n there exist k, and d, > 0 such that for each m € N for
which # < 0p and for i € {1...n} there exists j = j(sm,i) € {1,...,kn} such

that ,— 1 j— 1 1 ,— 1 ] 1
an((==+i—). — (Z==+—-2L1-) =)=0
n n-kp Sm n n - kp Sm

Let {sm,,, ., }-en be a subsequence of {sm,, ) }.en such that for each z € N

1 . . . .
S (o) < 0p and j = (Sman(z)al) = Jni,..., ](Sman(z)an) = Jnn are

common for all z € N. Put 51, = Sma,, (1)- We proceed by induction.
The task is now to show that {x : X(8my, -G)N[0,1] 7 0} € I. Let (a,b) C [0,1].

ig—1 i_O]
no ’no

we have

Then there exist a natural number ng and ig € {1,...,ng} such that |

(a,b).
We shall consider a sequence {smano(z)} zeN and a natural number ky, corre-

sponding to ng. Then for each n > ng sm,, € {Smano(z)}ZEN' Hence for each
n > ng there exists j = jpny%p such that

o—1 j—1 1 o0 — 1 ] 1
i (5 mom) s (e b)) =
no  nokng Smp, no nokng Smp,

i1 .
(C,d)—(ZO + 2 woo, Y )

ng nokny Mo nokng

Let

Then (¢,d) C (a,b) and for each n > ng we have

0= (e e =) = = (s, 6) N ).

Smpn Smpn Smpn

SO
(¢,;d) € [0,1]\ ((sm,, - G) N[0,1]).

Therefore o o
(e.d)c J (10,1 ((sm,, - G) N[0,1])

n=1n=r

and lim sup, ((sm,, - G) N[0,1]) is nowhere dense. Thus

X(Smpr.'G)ﬂ[OJ-} —o)oo I a.e.

r—
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which completes the proof. O

PROOF OF THEOREM 2: Let (s),(t) € S and limy oo 72 = 1. Then using
Lemma 1 we get immediately the equality of topologies.

Now, let (s),(t) € Sp and limm—o0o 72 = a € (0,+00). Let us suppose that
0 < a < 1. We can assume that i—z > %a for all m € N. We want to show that
Tisyr # Tuyr-

From the proof of Property (8) it follows that there exists a set Y, which is a
countable sum of closed intervals, such that {0} U (R\Y) € 757 and 0 is not
a (t)-I-density point of the set R\ aY’, which is equivalent to the fact that 0 is
not an («at)-I-dispersion point of the set Y, so neither of the set G = int Y since
Y\intY € I.

It suffices to show that 0 is not an (s)-I-dispersion point of the set GG, because
it means that 0 is not an (s)-I-dispersion point of Y, so {0} U (R\Y) ¢ T,

For convenience we restrict our consideration to the right-hand case and sup-
pose, contrary to our claim, that 0 is a right-hand (s)-I-dispersion point of the
open set G. By Lemma 2 we know that

(*) for every natural number n there exist a natural number k and a real number
0 > 0 such that for every natural m satisfying # < § and for each
i€{l,...,n} there exists a natural number j € {1,...,k} such that

—1 j—1 1 i—1 ] 1
Gﬁ((ZTﬂL]n—k)'m’(zTﬂLﬁ)'m) =0
‘We shall show that

for every natural number N there exist a natural number K and a real

number A > 0 such that for every natural m satisfying the inequality
ﬁ < A and for each ¢ € {1,..., N} there exists a natural number j €

{1,...,K}suchthatYﬂ((%—l—%)~ﬁ, (;_Tl‘FN]—K)ﬁ) = (.

Consider an arbitrary natural number N. Applying (%) for n = N we choose
k € N and ¢ > 0 satisfying (). Since, by assumption, ST’:L tends to 1, it follows
that

() for every e > 0 there exists a natural number n. such that for every n > n.
we have an inequality |%| <e.
Set K = 3k and we fix A > 0 such that
[
A<y
and
(2) for every m € N, if % < 2A then m > ne, where € = ﬁ

Therefore for every m € N such that ﬁ < A we have % < 2A < § (since
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atlm ), so by (2) and (xx) the following inequality holds:
Sm, — Otm 1
otm, 2NK
Fix an arbitrary ¢ € {1,...,N}. From (x) for i = i there exists a natural

number j € {1,...,k} such that

— 1 -1 1 i — 1 j 1
vn((E +‘7— (= L) =) =0
n nk Sm n nk Sm

To obtain a contradiction, suppose that for every j€{l,...,K} the set Y has

common points with the interval ((% + W) : ﬁ (Tl + N]—K) L ) so for
1 i

- T+3nk) ﬁ’
it means y € (0, m} )and y-aty, € (i_1 + é;é, inl + 3nk) m () we see that
there exists a number j € {1 n} such that for any y € Y the point y - s;, does
izl -2-). But for 7 = 3j — 1 there exists

every j € {1,..., K} there exists y € G such that y € ( —i—

not, belong to the interval (7= L1

n
a point y € Y such that y - aty, € (Tl 3—_,3 izl 3?an1) Simultaneously
-t~y sl = [y (ot )| < ot D oml < g = ghp hence
Y- Sm € {’ Ly 3nk =t S 3nk) = (Tl + %, % + nk) This contradiction
completes the proof. O

By Theorem 1 it is obvious that for sequences belonging to S\ Sy we can have
the same topology even if the sequences considered do not satisfy the condition
limy,—o0 i—z =1.

The following theorems show more properties of the family of I-density type
topologies.

Theorem 3. For every sequence (t) € Sy there exists a sequence (s) € Sy such
that Tiyr & Tigy -

PRrROOF: Let (t) € Sg. Then set o € (0,1) and let (s) = (at). Then (s) € Sy
and limp o0 2 = a # 1, so by Theorem 2 7(yy; # T(,); and by Property (2)
Tisyr € Tinyr- U

Theorem 4. For every sequence (t) € S there exists a sequence (s) € S such
that Tyyp S Tisy-

Proor: If (t) € S\ Sy then Ty = 77 and it is sufficient to take an arbitrary
sequence (s) € Sp. Let us assume that (t) € Sg. We define (s) = (at), where
o € R and a > 1. Then by Property (2), 7;; C 7(5); and from Theorem 2 it
follows that T{t) 1 # T<8> I O

743
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Theorem 5. There exist sequences (s), (t) € So such that Ty \ Tyyy; # 0 and
tyI \Ts 1 5& 0.
PrROOF: Let (s) = {(2n — D!} en, (&) = {(2n)!}hen. Of course (s), (t) € Sp. Set
1

Yl = Uﬁl(@’m)’ Y2 = Uzoz2(m,m) We have Yl M Y2 = @
and [0,1]\ (Y1 UY3) € I. Moreover

(tn - Y1) N1 [0,1] = ((2n)!- G (@ﬁ)) A0, 1]

k=1

(o, 0 () oo

k=n-+1

c ((2n)!- [0, m» N0, 1]

- [Peerm) non= )

and, of course, for any subsequence {t, }pen C (t), (tn, - Y1)N[0,1] C [0, %ﬁ)
It follows that limsup,,(tn, - Y1) N [0,1] = {0} € I, hence 0 is a right-hand (t)-
I-dispersion point of Y7, which gives that it is a right-hand (t)-I-density point
of Y. Finally Zs = (-Y2) U{0}UY5 € IT(t)I-

In the same manner we can see that (s, -Y2)N[0,1] C [0, 21 ) and conclude that
Z1 = (-Y1)U{0}UY1 € Ty We thus get Z1 € Tigy 1\ Ty and Zz € Ty 1\ Tigy1

Theorem 6. Let 7* be a topology generated by |J (s)€S T< sy1- Then
U(s)ES 7’<8>I #T" = 2R,

PROOF: It is immediate that Jyecg Z(syr # 2R because Uisyes Z(sy € B. Our
proof starts with the observation that if for every x € A, where A € B, there
exists a sequence (s) € S such that x € ®,(A) then A € 7*. Indeed, let A € B,
z € Aand (s) € S be a sequence such that « € ®,y7(A). Since (®;(4)AA) € 1
we have z € @1 (AN®(A)). Simultaneously AN®(A) € Tr C Ty,y;. Therefore
(AN®r(A))U{z} € Ty C 7" and finally A = s (ANP(A) U{z}) € T".

We next show that smgletons are open in 7*. Let E = |, 1(%, bln) where
an = (2n+1)!, by, = (2n)! for n € N. Then (a), (b) € S. We claim that 0 is a right-
hand (a)-I-dispersion point of the set F, because (an, - E) N[0, 1] C (0, 2n1+2) and
hence X(q,-E)n[0, 1,72 0 I a.e. on [0,1] and so does each subsequence. Similarly

0 is a right-hand (b)-I- dens1ty point of the set E, because (by,-E)N[0, 1] D (2n+1 ,1)
and hence x(,,. m)n|0, 1,72 1 I-a.e. on [0, 1] and so does each subsequence.
—00
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Putting A = E'U {0} U (—E) we obtain 0 € ®4)7(A) and for the set B =
?:1((%, é) U (—%, —ﬁ)) U {0} we have 0 € ©4)7(B), so by the above
A,B € T*. Therefore {0} = AN B € T*. Since the topologies considered are
invariant under translations, we have {z} = (A+x)N(B+z) € T* for any = € R,

and finally 7* = 2R, O
Theorem 7. Let T = {Ty;(s) € S} = {T1} U{T(s1;(s) € So}. Then
card(7) = c.

PRrROOF: Obviously card(7) < c.

If (s) € Sy then for every oo > 0 a sequence (as) € Sg. By Theorem 2 for every
a, >0, a# [ we have ’T<a8>] #+ T(ﬁs)] so card(7T) > c. O
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