Article
Keywords:
$D$-space; left separated; compact; countably compact; scattered space; Novák number
Summary:
We prove that (A) if a countably compact space is the union of countably many $D$ subspaces then it is compact; (B) if a compact $T_2$ space is the union of fewer than $N(\Bbb R)$ = $\operatorname{cov} (\Cal M)$ left-separated subspaces then it is scattered. Both (A) and (B) improve results of Tkačenko from 1979; (A) also answers a question that was raised by Arhangel'ski\v{i} and improves a result of Gruenhage.
References:
[1] Arhangel'skii A.V.:
$D$-spaces and covering properties. Topology Appl. 146-147 (2005), 437-449.
MR 2107163 |
Zbl 1063.54013
[2] Gerlits J., Juhász I.:
On left-separated compact spaces. Comment. Math. Univ. Carolinae 19 (1978), 53-62.
MR 0487982
[4] Juhász I., Shelah S.:
$\pi (X) = \delta (X)$ for compact $X$. Topology Appl. 32 (1989), 289-294.
MR 1007107 |
Zbl 0688.54002
[5] Simon P.:
Left-separated spaces: a comment to a paper of M.G. Tkačenko. Comment. Math. Univ. Carolinae 20 (1979), 597-603.
MR 0550459
[6] Tkačenko M.G.:
O bikompaktah predstavimyh v vide obedidenia schetnogo chisla levych podprostranstv I, II. Comment. Math. Univ. Carolinae 20 (1979), 361-379 and 381-395.
MR 0539565
[7] van Douwen E., Pfeffer W.F.:
Some properties of the Sorgenfrey-line and related spaces. Pacific J. Math. 81 (1979), 371-377.
MR 0547605 |
Zbl 0409.54011
[8] Weston J.H., Shilleto J.:
Cardinalities of dense sets. Gen. Topology Appl. 6 (1976), 227-240.
MR 0442875 |
Zbl 0321.54003