Previous |  Up |  Next

Article

Keywords:
zero set universals; continuous function universals; $S$ and $L$ spaces; admissible topology; cardinal invariants; function spaces
Summary:
We examine when a space $X$ has a zero set universal parametrised by a metrisable space of minimal weight and show that this depends on the $\sigma$-weight of $X$ when $X$ is perfectly normal. We also show that if $Y$ parametrises a zero set universal for $X$ then $hL(X^n)\leq hd(Y)$ for all $n\in \Bbb N$. We construct zero set universals that have nice properties (such as separability or ccc) in the case where the space has a $K$-coarser topology. Examples are given including an $S$ space with zero set universal parametrised by an $L$ space (and vice versa).
References:
[1] Arens R., Dugundji J.: Topologies for function spaces. Pacific J. Math. 1 (1951), 5-31. MR 0043447 | Zbl 0044.11801
[2] Arhangel'skii A.V.: Topological Function Spaces. Kluwer Academic Publishers, 1992. MR 1485266
[3] Engelking R.: General Topology. Heldermann, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[4] Gartside P., Marsh A.: Compact universals. Topology Appl. 143 (2004), 1-3 1-13. MR 2080279 | Zbl 1056.54021
[5] Gartside P.M., Knight R.W., Lo J.T.H.: Parametrizing open universals. Topology Appl. 119 (2002), 2 131-145. MR 1886091 | Zbl 0990.54003
[6] Gartside P.M., Lo J.T.H.: The hierarchy of Borel universal sets. Topology Appl. 119 (2002), 117-129. MR 1886090 | Zbl 1006.54049
[7] Gartside P.M., Lo J.T.H.: Open universal sets. Topology Appl. 129 (2003), 1 89-101. MR 1955668 | Zbl 1017.54020
[8] Gruenhage G.: Continuously perfect normal spaces and some generalizations. Trans. Amer. Math. Soc. 224 (1976), 323-338. MR 0428275
[9] Gruenhage G.: Generalized metric spaces. in Handbook of Set-theoretic Topology, North Holland, Amsterdam, 1984, pp,423-501. MR 0776629 | Zbl 0794.54034
[10] Gul'ko S.P.: On properties of subsets of $\Sigma $-products. Soviet Math. Dokl. 18 (1977), 1438-1442.
[11] Hodel R.: Cardinal functions I. in Handbook of Set-theoretic Topology, North Holland, Amsterdam, 1984, pp.1-61. MR 0776620 | Zbl 0559.54003
[12] Marsh A.: Topology of function spaces. PhD. Thesis, Univ. Pittsburgh, 2004.
[13] Nakhmanson L.B.: The Suslin number and calibres of the ring of continuous functions. Izv. Vyssh. Uchebn. Zaved. Mat. 3 (1984), 49-55. MR 0743686
[14] Todorčević S.: Partition Problems in Topology. Contemporary Mathematics 84, Amer. Math. Soc., Providence, RI, 1989. MR 0980949
[15] Zenor P.: Some continuous separation axioms. Fund. Math. 90 2 (1975/1976), 143-158. MR 0394561
Partner of
EuDML logo