[AB91] Adams M.E., Beazer R.:
Congruence properties of distributive double $p$-algebras. Czechoslovak Math. J. 41 (1991), 395-404.
MR 1117792 |
Zbl 0758.06008
[BP04] Ball R.N., Pultr A.:
Forbidden forests in Priestley spaces. Cah. Topol. Géom. Différ. Catég. 45 1 (2004), 2-22.
MR 2040660 |
Zbl 1062.06020
[BKW77] Bigard A., Keimel K., Wolfenstein S.:
Groupes et anneaux réticulés. Lecture Notes in Mathematics 608, Springer, Berlin-Heidelberg-New York, 1977.
MR 0552653 |
Zbl 0384.06022
[Bl76] Blair R.L.:
Spaces in which special sets are $z$-embedded. Canad. J. Math. 28 (1976), 673-690.
MR 0420542 |
Zbl 0359.54009
[BlH74] Blair R.L., Hager A.W.:
Extensions of zerosets and of real valued functions. Math. Z. 136 (1974), 41-57.
MR 0385793
[CL02] Coquand Th., Lombardi H.:
Hidden constructions in abstract algebra: Krull dimension of distributive lattices and commutative rings. Commutative Ring Theory and Applications (M. Fontana, S.-E. Kabbaj, S. Wiegand, Eds.), pp.477-499; Lecture Notes in Pure and Appl. Math., 231, Marcel Dekker, New York, 2003.
MR 2029845
[CLR03] Coquand Th., Lombardi H., Roy M.-F.: Une caractérisation élémentaire de la dimension de Krull. preprint.
[En89] Engelking R.:
General Topology. Sigma Series in Pure Math. 6, Heldermann, Berlin, 1989.
MR 1039321 |
Zbl 0684.54001
[Es98] Escardó M.H.:
Properly injective spaces and function spaces. Topology Appl. 89 (1998), 75-120.
MR 1641443
[GJ76] Gillman L., Jerison M.:
Rings of Continuous Functions. Graduate Texts in Mathematics 43, Springer, Berlin-Heidelberg-New York, 1976.
MR 0407579 |
Zbl 0327.46040
[HJ61] Henriksen M., Johnson D.G.:
On the structure of a class of archimedean lattice-ordered algebras. Fund. Math. 50 (1961), 73-94.
MR 0133698 |
Zbl 0099.10101
[MLMW94] Henriksen M., Larson S., Martínez J., Woods R.G.:
Lattice-ordered algebras that are subdirect products of valuation domains Trans. Amer. Math. Soc. 345 (1994), 1 195-221.
MR 1239640
[HMW03] Henriksen M., Martínez J., Woods R.G.:
Spaces $X$ in which all prime $z$-ideals of $C(X)$ are either minimal or maximal. Comment. Math. Univ. Carolinae 44 2 (2003), 261-294.
MR 2026163
[HW04] Henriksen M., Woods R.G.:
Cozero complemented spaces: when the space of minimal prime ideals of a $C(X)$ is compact. Topology Appl. 141 (2004), 147-170.
MR 2058685 |
Zbl 1067.54015
[HuP80a] Huijsmans C.B., de Pagter B.:
On $z$-ideals and $d$-ideals in Riesz spaces, I. Indag. Math. 42 2 (1980), 183-195.
MR 0577573 |
Zbl 0442.46022
[HuP80b] Huijsmans C.B., de Pagter B.:
On $z$-ideals and $d$-ideals in Riesz spaces, II. Indag. Math. 42 4 (1980), 391-408.
MR 0597997 |
Zbl 0451.46003
[J82] Johnstone P.J.:
Stone Spaces. Cambridge Studies in Advanced Mathematics, vol. 3, Cambridge Univ. Press, Cambridge, 1982.
MR 0698074 |
Zbl 0586.54001
[JT84] Joyal A., Tierney M.:
An extension of the Galois theory of Grothendieck. Mem. Amer. Math. Soc. 51 309 (1984), 71 pp.
MR 0756176 |
Zbl 0541.18002
[Ko89] Koppelberg S.:
Handbook of Boolean Algebras, I. J.D. Monk, Ed., with R. Bonnet; North Holland, Amsterdam-New York-Oxford-Tokyo, 1989.
MR 0991565
[M73a] Martínez J.:
Archimedean lattices. Algebra Universalis 3 (1973), 247-260.
MR 0349503
[M04a] Martínez J.:
Dimension in algebraic frames. Czechoslovak Math. J., to appear.
MR 2291748
[M04b] Martínez J.:
Unit and kernel systems in algebraic frames. Algebra Universalis, to appear.
MR 2217275
[MZ03] Martínez J., Zenk E.R.:
When an algebraic frame is regular. Algebra Universalis 50 (2003), 231-257.
MR 2037528 |
Zbl 1092.06011
[MZ06] Martínez J., Zenk E.R.: Dimension in algebraic frames, III: dimension theories. in preparation.
[Mr70] Mrowka S.:
Some comments on the author's example of a non-$R$-compact space. Bull. Acad. Polon. Sci., Ser. Math. Astronom. Phys. 18 (1970), 443-448.
MR 0268852
[Se71] Semadeni Z.:
Banach Spaces of Continuous Functions. Polish Scientific Publishers, Warsaw, 1971.
MR 0296671 |
Zbl 0478.46014