Article
Keywords:
subnormal subgroups; soluble-by-finite groups
Summary:
Let $G$ be a group with the property that there are no infinite descending chains of non-subnormal subgroups of $G$ for which all successive indices are infinite. The main result is that if $G$ is a locally (soluble-by-finite) group with this property then either $G$ has {\it all\/} subgroups subnormal or $G$ is a soluble-by-finite minimax group. This result fills a gap left in an earlier paper by the same authors on groups with the stated property.
References:
[DES] Dixon M.R., Evans M.J., Smith H.:
Locally (soluble-by-finite) groups of finite rank. J. Algebra 182 (1996), 756-769.
MR 1398121 |
Zbl 0854.20037
[KS1] Kurdachenko L.A., Smith H.:
Groups with the weak minimal condition for non-subnormal subgroups. Ann. Mat. Pura Appl. 173 (1997), 299-312.
MR 1625608 |
Zbl 0939.20040
[KS2] Kurdachenko L.A., Smith H.:
Groups with the weak maximal condition for non-subnormal subgroups. Ricerche Mat. 47 (1998), 29-49.
MR 1760322 |
Zbl 0928.20025
[Me] Merzlyakov Yu.I.:
Locally soluble groups of finite rank. Algebra i Logika 3 (1964), 5-16; Erratum 8 (1969), 686-690.
MR 0289647
[Mö] Möhres W.:
Auflösbarkeit von Gruppen, deren Untergruppen alle subnormal sind. Arch. Math. (Basel) 54 (1990), 232-235.
MR 1037610
[R] Robinson D.J.S.:
Finiteness conditions and generalized soluble groups. 2 vols., Springer, Berlin, 1972.
Zbl 0243.20033
[Z] Zai'cev D.I.:
Theory of minimax groups. Ukrainian Math. J. 23 (1971), 536-542.
MR 0294512