[1] Bennett M.:
Rational approximation to algebraic number of small height: The diophantine equation $|ax^n-by^n|=1$. J. Reine Angew. Math. 535 (2001), 1-49.
MR 1837094 |
Zbl 1009.05033
[2] Bilu Y.F.:
Catalan's Conjecture. Séminaire Bourbaki, 55ème année, 909, 2002.
Zbl 1094.11014
[3] Bugeaud Y.:
Linear forms in p-adic logarithms and the diophantine equation $(x^n-1)/(x-1)=y^q$. Math. Proc. Cambridge Philos. Soc. 127 (1999), 373-381.
MR 1713116
[4] Bugeaud Y., Mignotte M.:
On the diophantine equation $(x^n-1)/(x-1)=y^q$ with negative $x$. Proceedings of the Millennial Conference on Number Theory, Urbana-Champaign, IL, USA, 2002, pp.145-151.
MR 1956223 |
Zbl 1064.11030
[5] Bugeaud Y., Mignotte M., Roy Y., Shorey T.N.:
On the diophantine equation $(x^n-1)/(x-1)=y^q$. Math. Proc. Cambridge Philos. Soc. 127 (1999), 353-372.
MR 1713115
[6] Bugeaud Y., Mignotte M., Roy Y.:
On the diophantine equation $(x^n-1)/(x-1)=y^q$. Pacific J. Math. 193 (2000), 257-268.
MR 1755817
[7] Crescenzo P.:
A diophantine equation arises in the theory of finite groups. Advances in Math. 17 (1975), 25-29.
MR 0371812
[8] Dickson L.E.:
History of the Theory of Numbers. vol 2, AMS Chelsea, Providence, 1999.
Zbl 0958.11500
[9] Khosravi A., Khosravi B.:
On the diophantine equation $(q^n-1)/(q-1)=y$. Comment. Math. Univ. Carolinae 44 (2003), 1 1-7.
MR 2045841
[10] Křížek M., Luca F., Somer L.:
17 Lectures on Fermat Numbers: From Number Theory to Geometry. Springer, New York, 2001.
MR 1866957
[12] Ljunggren W.: Noen Setninger om ubestemte likninger av formen $(x^n-1)/(x-1)=y^q$. Norsk. Mat. Tidsskr. 25 (1943), 17-20.
[13] Nagell T.: Note sur l'equation indéterminée $(x^n-1)/(x-1)=y^q$. Norsk. Mat. Tidsskr. 2 (1920), 75-78.
[14] Polický Z.: Exercises of division theory leading to brand new results. Proceedings of the International Conference The Mathematics Education into the 21st Century Project; Brno, Czech Republic, 2003, pp.231-234.
[16] Saradha N., Shorey T.N.:
The equation $(x^n-1)/(x-1)=y^q$ with $x$ square. Math. Proc. Cambridge Philos. Soc. 125 (1999), 1-19.
MR 1645497
[17] Shorey T.N.:
Exponential diophantine equation involving product of consecutive integers and related equations. Bambah, R.P. et al., Number theory; Birkhäuser, Trends in Mathematics, Basel, 2000, pp.463-495.
MR 1764814