Previous |  Up |  Next

Article

Keywords:
diophantine equation; Fermat and Mersenne primes; Catalan conjecture
Summary:
In this paper the special diophantine equation $\frac{q^{n}-1}{q-1}=y$ with integer coefficients is discussed and integer solutions are sought. This equation is solved completely just for four prime divisors of $y-1$.
References:
[1] Bennett M.: Rational approximation to algebraic number of small height: The diophantine equation $|ax^n-by^n|=1$. J. Reine Angew. Math. 535 (2001), 1-49. MR 1837094 | Zbl 1009.05033
[2] Bilu Y.F.: Catalan's Conjecture. Séminaire Bourbaki, 55ème année, 909, 2002. Zbl 1094.11014
[3] Bugeaud Y.: Linear forms in p-adic logarithms and the diophantine equation $(x^n-1)/(x-1)=y^q$. Math. Proc. Cambridge Philos. Soc. 127 (1999), 373-381. MR 1713116
[4] Bugeaud Y., Mignotte M.: On the diophantine equation $(x^n-1)/(x-1)=y^q$ with negative $x$. Proceedings of the Millennial Conference on Number Theory, Urbana-Champaign, IL, USA, 2002, pp.145-151. MR 1956223 | Zbl 1064.11030
[5] Bugeaud Y., Mignotte M., Roy Y., Shorey T.N.: On the diophantine equation $(x^n-1)/(x-1)=y^q$. Math. Proc. Cambridge Philos. Soc. 127 (1999), 353-372. MR 1713115
[6] Bugeaud Y., Mignotte M., Roy Y.: On the diophantine equation $(x^n-1)/(x-1)=y^q$. Pacific J. Math. 193 (2000), 257-268. MR 1755817
[7] Crescenzo P.: A diophantine equation arises in the theory of finite groups. Advances in Math. 17 (1975), 25-29. MR 0371812
[8] Dickson L.E.: History of the Theory of Numbers. vol 2, AMS Chelsea, Providence, 1999. Zbl 0958.11500
[9] Khosravi A., Khosravi B.: On the diophantine equation $(q^n-1)/(q-1)=y$. Comment. Math. Univ. Carolinae 44 (2003), 1 1-7. MR 2045841
[10] Křížek M., Luca F., Somer L.: 17 Lectures on Fermat Numbers: From Number Theory to Geometry. Springer, New York, 2001. MR 1866957
[11] Ligh S., Neal L.: A note on Mersenne numbers. Math. Mag. 47 (1974), 231-233. MR 0347728 | Zbl 0292.10013
[12] Ljunggren W.: Noen Setninger om ubestemte likninger av formen $(x^n-1)/(x-1)=y^q$. Norsk. Mat. Tidsskr. 25 (1943), 17-20.
[13] Nagell T.: Note sur l'equation indéterminée $(x^n-1)/(x-1)=y^q$. Norsk. Mat. Tidsskr. 2 (1920), 75-78.
[14] Polický Z.: Exercises of division theory leading to brand new results. Proceedings of the International Conference The Mathematics Education into the 21st Century Project; Brno, Czech Republic, 2003, pp.231-234.
[15] Ribenboim P.: The New Book of Prime Number Records. Springer, New York, 1996. MR 1377060 | Zbl 0856.11001
[16] Saradha N., Shorey T.N.: The equation $(x^n-1)/(x-1)=y^q$ with $x$ square. Math. Proc. Cambridge Philos. Soc. 125 (1999), 1-19. MR 1645497
[17] Shorey T.N.: Exponential diophantine equation involving product of consecutive integers and related equations. Bambah, R.P. et al., Number theory; Birkhäuser, Trends in Mathematics, Basel, 2000, pp.463-495. MR 1764814
Partner of
EuDML logo