Article
Keywords:
hypersurface; sphere; scalar curvature
Summary:
In this paper, by using Cheng-Yau's self-adjoint operator $\square$, we study the complete hypersurfaces in a sphere with constant scalar curvature.
References:
[1] Alencar H., do Carmo M.P.:
Hypersurfaces with constant mean curvature in spheres. Proc. Amer. Math. Soc. 120 (1994), 1223-1229.
MR 1172943 |
Zbl 0802.53017
[2] Cheng S.Y., Yau S.T.:
Hypersurfaces with constant scalar curvature. Math. Ann. 225 (1977), 195-204.
MR 0431043 |
Zbl 0349.53041
[3] Hou Z.H.:
Hypersurfaces in sphere with constant mean curvature. Proc. Amer. Math. Soc. 125 (1997), 1193-1196.
MR 1363169
[4] Lawson H.B., Jr.:
Local rigidity theorems for minimal hypersurfaces. Ann. of Math. (2) 89 (1969), 187-197.
MR 0238229 |
Zbl 0174.24901
[5] Li H.:
Hypersurfaces with constant scalar curvature in space forms. Math. Ann. 305 (1996), 665-672.
MR 1399710 |
Zbl 0864.53040
[6] Nomizu K., Smyth B.:
A formula for Simon's type and hypersurfaces. J. Differential Geom. 3 (1969), 367-377.
MR 0266109
[7] Okumuru M.:
Hypersurfaces and a pinching problem on the second fundamental tensor. Amer. J. Math. 96 (1974), 207-213.
MR 0353216
[8] Omori H.:
Isometric immersions of Riemannian manifolds. J. Math. Soc. Japan 19 (1967), 205-214.
MR 0215259 |
Zbl 0154.21501
[9] Simons J.:
Minimal varieties in Riemannian manifolds. Ann. of Math. (2) 88 (1968), 62-105.
MR 0233295 |
Zbl 0181.49702
[10] Yau S.T.:
Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math. 28 (1975), 201-228.
MR 0431040 |
Zbl 0291.31002