Previous |  Up |  Next

Article

Keywords:
partial ultrametric; extension operator; Assouad dimension
Summary:
We consider the question of simultaneous extension of partial ultrametrics, i.e. continuous ultrametrics defined on nonempty closed subsets of a compact zero-dimensional metrizable space. The main result states that there exists a continuous extension operator that preserves the maximum operation. This extension can also be chosen so that it preserves the Assouad dimension.
References:
[1] Assouad P.: Sur la distance de Nagata. C.R. Acad. Sci. Paris Sér. I Math. 294 (1982), 1 31-34. MR 0651069 | Zbl 0481.54015
[2] Assouad P.: Plongements lipschitziens dans $\Bbb R^n$. Bull. Soc. Math. France 111 (1983), 429-448. MR 0763553
[3] Banakh T.: On linear operators extending (pseudo)metrics. preprint. Zbl 0948.54021
[4] Banakh T.: AE(0)-spaces and regular operators extending (averaging) pseudometrics. Bull. Polish Acad. Sci. Math 42 (1994), 3 197-206. MR 1811849 | Zbl 0827.54010
[5] Banakh T., Bessaga C.: On linear operators extending $[$pseudo$]$metrics. Bull. Polish Acad. Sci. Math. 48 (2000), 1 35-49. MR 1751152 | Zbl 0948.54021
[6] Bessaga C.: On linear operators and functors extending pseudometrics. Fund. Math. 142 (1993), 2 101-122. MR 1211761 | Zbl 0847.54033
[7] Bessaga C.: Functional analytic aspects of geometry. Linear extending of metrics and related problems. Progress in functional analysis (Pe níscola, 1990), 247-257, North-Holland Math. Stud., 170, North-Holland, Amsterdam, 1992. MR 1150751 | Zbl 0771.54027
[8] Engelking R.: General Topology. PWN, Warsaw, 1977. MR 0500780 | Zbl 0684.54001
[9] Filippov V.V.: Topological structure of solution spaces of ordinary differential equations (in Russian). Uspekhi Mat. Nauk 48 (1993), 103-154. MR 1227948
[10] de Groot J.: Non-archimedean metrics in topology. Proc. Amer. Math. Soc. 7 (1956), 948-953. MR 0080905 | Zbl 0072.40201
[11] Künzi H.-P., Shapiro L.B.: On simultaneous extension of continuous partial functions. Proc. Amer. Math. Soc. 125 (1997), 1853-1859. MR 1415348
[12] Kuratowski K.: Sur l'espace des fonctions partielles. Ann. Mat. Pura Appl. 40 (1955), 61-67. MR 0074807 | Zbl 0065.34303
[13] Kuratowski K.: Sur une méthode de métrisation complète de certains espaces d'ensembles compacts. Fund. Math. 43 (1956), 114-138. MR 0079258 | Zbl 0071.38402
[14] Luosto K.: Ultrametric spaces bi-Lipschitz embeddable in $\bold R\sp n$. Fund. Math. 150 (1996), 1 25-42. MR 1387955
[15] Luukkainen J.: Assouad dimension: antifractal metrization, porous sets, and homogeneous measures. J. Korean Math. Soc. 35 (1998), 1 23-76. MR 1608518 | Zbl 0893.54029
[16] Luukkainen J., Movahedi-Lankarani H.: Minimal bi-Lipschitz embedding dimension of ultrametric spaces. Fund. Math. 144 (1994), 2 181-193. MR 1273695 | Zbl 0807.54025
[17] Michael E.: Continuous selections. II. Ann. of Math. (2) 64 (1956), 562-580. MR 0080909 | Zbl 0073.17702
[18] Nadler S.B.: Hyperspaces of Sets. Marcel Dekker, New York and Basel, 1978. MR 0500811 | Zbl 1125.54001
[19] Pikhurko O.: Extending metrics in compact pairs. Mat. Stud. 3 (1994), 103-106, 122. MR 1692801 | Zbl 0927.54029
[20] Stepanova E.N.: Continuation of continuous functions and the metrizability of paracompact $p$-spaces (in Russian). Mat. Zametki 53 (1993), 3 92-101; translation in Math. Notes 53 (1993), no. 3-4, 308-314. MR 1220188
[21] Tymchatyn E.D., Zarichnyi M.: On simultaneous linear extensions of partial (pseudo)metrics. Proc. Amer. Math. Soc. 132 9 (2004), 2799-2807. MR 2054807 | Zbl 1050.54011
[22] Priess-Crampe S., Ribenboim P.: Generalized ultrametric spaces. I. Abh. Math. Sem. Univ. Hamburg 66 (1996), 55-73. MR 1418219 | Zbl 0922.54028
[23] Zarichnyi M.: Regular linear operators extending metrics: a short proof. Bull. Polish Acad. Sci. Math. 44 (1996), 3 267-269. MR 1419399 | Zbl 0866.54017
Partner of
EuDML logo