Article
Keywords:
Corson compact space; Sokolov space; extent; $\omega $-monolithic space; $\Sigma $-products
Summary:
We study systematically a class of spaces introduced by Sokolov and call them Sokolov spaces. Their importance can be seen from the fact that every Corson compact space is a Sokolov space. We show that every Sokolov space is collectionwise normal, $\omega $-stable and $\omega $-monolithic. It is also established that any Sokolov compact space $X$ is Fréchet-Urysohn and the space $C_p(X)$ is Lindelöf. We prove that any Sokolov space with a $G_\delta $-diagonal has a countable network and obtain some cardinality restrictions on subsets of small pseudocharacter lying in $\Sigma $-products of cosmic spaces.
References:
[Ar1] Arhangel'skii A.V.:
Topological Function Spaces. Kluwer Acad. Publ., Dordrecht, 1992.
MR 1485266
[Ar2] Arhangel'skii A.V.:
On Lindelöf property and spread in $C_p$-theory. Topology Appl. 74:1 (1996), 83-90.
MR 1425928
[Ba] Baturov D.P.:
On subspaces of function spaces (in Russian). Vestnik Moskov. Univ. Ser. I Mat. Mekh. 42:4 (1987), 66-69.
MR 0913076
[Fa] Fabian M.:
Gateaux Differentiability of Convex Functions and Topology, Weak Asplund Spaces. Wiley, New York, 1997.
MR 1461271 |
Zbl 0883.46011
[Gr1] Gruenhage G.:
Generalized Metric Spaces. Handbook of Set-Theoretic Topology, edited by K. Kunen and J.E. Vaughan, Elsevier Sci. Publ., B.V., Amsterdam, 1984, pp.423-501.
MR 0776629 |
Zbl 0794.54034
[Gu1] Gul'ko S.P.:
On the properties of some function spaces. Soviet Math. Dokl. 19:6 (1978), 1420-1424.
MR 0514481 |
Zbl 0421.54013
[Gu2] Gul'ko S.P.:
On the structure of spaces of continuous functions and their complete paracompactness. Russian Math. Surveys 34:6 (1979), 36-44.
MR 0562814 |
Zbl 0446.46014
[Ju] Juhász I.:
Cardinal Functions in Topology - Ten Years Later. Mathematical Centre Tracts 123, Amsterdam, 1980.
MR 0576927
[Sh] Shapirovsky B.E.:
Special types of embeddings in Tychonoff cubes, subspaces of $\Sigma$-products and cardinal invariants. Colloq. Math. Soc. Janos Bolyai 23 (1978), 1055-1086.
MR 0588855
[So1] Sokolov G.A.:
On Lindelöf spaces of continuous functions (in Russian). Matem. Zametki 39:6 (1986), 887-894.
MR 0855936
[So2] Sokolov G.A.:
Lindelöf property and the iterated continuous function spaces. Fund. Math. 143 (1993), 87-95.
MR 1234993 |
Zbl 0841.54011
[Tk1] Tkachuk V.V.:
Calibers of spaces of functions and the metrization problem for compact subsets of $C_p(X)$. Vestnik Moskov. Univ. 43:3 (1988), 21-24.
MR 0966861
[Tk2] Tkachuk V.V.:
Behaviour of the Lindelöf $\Sigma$-property in iterated function spaces. Topology Appl. 107 (2000), 297-305.
MR 1779816