[2] Binder J., Pták P.:
A representation of orthomodular lattices. Acta Univ. Carolin. - Math. Phys. 31 (1990), 21-26.
MR 1098124
[3] Dvurečenskij A., Pulmannová S.:
New Trends in Quantum Structures. Kluwer/Dordrecht & Ister/Bratislava, 2000.
MR 1861369
[4] Greechie R.J.:
Orthomodular lattices admitting no states. J. Combin. Theory Ser. A 10 (1971), 119-132.
MR 0274355 |
Zbl 0219.06007
[5] Harding J., Pták P.:
On the set representation of an orthomodular poset. Colloquium Math. 89 (2001), 233-240.
MR 1854706 |
Zbl 0984.06005
[6] Kallus M., Trnková V.:
Symmetries and retracts of quantum logics. Internat. J. Theoret. Phys. 26 (1987), 1-9.
MR 0890206
[7] Katrnoška F.:
A representation of orthoposets. Comment. Math. Univ. Carolinae 23 (1982), 489-498.
MR 0677857
[8] Navara M.:
An orthomodular lattice admitting no group-valued measure. Proc. Amer. Math. Soc. 122 (1994), 7-12.
MR 1191871 |
Zbl 0809.06008
[9] Navara M., Pták P., Rogalewicz V.:
Enlargements of quantum logics. Pacific J. Math. 135 (1988), 361-369.
MR 0968618
[10] Navara M., Rogalewicz V.:
The pasting constructions for orthomodular posets. Math. Nachr. 154 (1991), 157-168.
MR 1138377 |
Zbl 0767.06009
[11] Ovchinnikov P.G.:
Exact topological analogs to orthoposets. Proc. Amer. Math. Soc. 125 (1997), 2839-2841.
MR 1415360 |
Zbl 0880.06003
[12] Pták P.:
Weak dispersion-free states and the hidden variables hypothesis. J. Math. Phys. 24 (1983), 839-840.
MR 0700618
[13] Pták P., Pulmannová S.:
Orthomodular Structures as Quantum Logics. Kluwer Academic Publishers, Dordrecht, 1991.
MR 1176314
[14] Sultanbekov F.F.:
Set logics and their representations. Internat. J. Theoret. Phys. 32 (1993), 11 2177-2186.
MR 1254335 |
Zbl 0799.03081
[15] Tkadlec J.:
Partially additive states on orthomodular posets. Colloquium Math. 62 (1991), 7-14.
MR 1114613 |
Zbl 0784.03037
[16] Trnková V.:
Automorphisms and symmetries of quantum logics. Internat. J. Theoret. Phys. 28 (1989), 1195-1214.
MR 1031603
[17] Varadarajan V.: Geometry of Quantum Theory I, II. Van Nostrand, Princeton, 1968, 1970.
[18] Weber H.:
There are orthomodular lattices without non-trivial group valued states; a computer-based construction. J. Math. Anal. Appl. 183 (1994), 89-94.
MR 1273434 |
Zbl 0797.06010