Previous |  Up |  Next

Article

Keywords:
(weak) state on quantum logic; Greechie paste job; Boolean algebra
Summary:
In this paper we carry on the investigation of partially additive states on quantum logics (see [2], [5], [7], [8], [11], [12], [15], [18], etc.). We study a variant of weak states — the states which are additive with respect to a given Boolean subalgebra. In the first result we show that there are many quantum logics which do not possess any 2-additive central states (any logic possesses an abundance of 1-additive central state — see [12]). In the second result we construct a finite 3-homogeneous quantum logic which does not possess any two-valued 1-additive state with respect to a given Boolean subalgebra. This result strengthens Theorem 2 of [5] and presents a rather advanced example in the orthomodular combinatorics (see also [9], [13], [4], [6], [16], etc.). In the rest we show that Greechie logics allow for $2$-additive three-valued states, and in case of Greechie lattices we show that one can even construct many $2$-additive two-valued states. Some open questions are posed, too.
References:
[1] Beran L.: Orthomodular Lattices. Algebraic Approach. Academia, Praha, 1984. MR 0785005 | Zbl 0558.06008
[2] Binder J., Pták P.: A representation of orthomodular lattices. Acta Univ. Carolin. - Math. Phys. 31 (1990), 21-26. MR 1098124
[3] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures. Kluwer/Dordrecht & Ister/Bratislava, 2000. MR 1861369
[4] Greechie R.J.: Orthomodular lattices admitting no states. J. Combin. Theory Ser. A 10 (1971), 119-132. MR 0274355 | Zbl 0219.06007
[5] Harding J., Pták P.: On the set representation of an orthomodular poset. Colloquium Math. 89 (2001), 233-240. MR 1854706 | Zbl 0984.06005
[6] Kallus M., Trnková V.: Symmetries and retracts of quantum logics. Internat. J. Theoret. Phys. 26 (1987), 1-9. MR 0890206
[7] Katrnoška F.: A representation of orthoposets. Comment. Math. Univ. Carolinae 23 (1982), 489-498. MR 0677857
[8] Navara M.: An orthomodular lattice admitting no group-valued measure. Proc. Amer. Math. Soc. 122 (1994), 7-12. MR 1191871 | Zbl 0809.06008
[9] Navara M., Pták P., Rogalewicz V.: Enlargements of quantum logics. Pacific J. Math. 135 (1988), 361-369. MR 0968618
[10] Navara M., Rogalewicz V.: The pasting constructions for orthomodular posets. Math. Nachr. 154 (1991), 157-168. MR 1138377 | Zbl 0767.06009
[11] Ovchinnikov P.G.: Exact topological analogs to orthoposets. Proc. Amer. Math. Soc. 125 (1997), 2839-2841. MR 1415360 | Zbl 0880.06003
[12] Pták P.: Weak dispersion-free states and the hidden variables hypothesis. J. Math. Phys. 24 (1983), 839-840. MR 0700618
[13] Pták P., Pulmannová S.: Orthomodular Structures as Quantum Logics. Kluwer Academic Publishers, Dordrecht, 1991. MR 1176314
[14] Sultanbekov F.F.: Set logics and their representations. Internat. J. Theoret. Phys. 32 (1993), 11 2177-2186. MR 1254335 | Zbl 0799.03081
[15] Tkadlec J.: Partially additive states on orthomodular posets. Colloquium Math. 62 (1991), 7-14. MR 1114613 | Zbl 0784.03037
[16] Trnková V.: Automorphisms and symmetries of quantum logics. Internat. J. Theoret. Phys. 28 (1989), 1195-1214. MR 1031603
[17] Varadarajan V.: Geometry of Quantum Theory I, II. Van Nostrand, Princeton, 1968, 1970.
[18] Weber H.: There are orthomodular lattices without non-trivial group valued states; a computer-based construction. J. Math. Anal. Appl. 183 (1994), 89-94. MR 1273434 | Zbl 0797.06010
Partner of
EuDML logo