Previous |  Up |  Next

Article

Keywords:
(algebraically) universal category; finite-to-finite universal category; almost universal category; $0$-lattice; variety of $0$-lattices
Summary:
A concrete category $\Bbb K$ is (algebraically) {\it universal\/} if any category of algebras has a full embedding into $\Bbb K$, and $\Bbb K$ is {\it almost universal\/} if there is a class $\Cal C$ of $\Bbb K$-objects such that all non-constant homomorphisms between them form a universal category. The main result of this paper fully characterizes the finitely generated varieties of $0$-lattices which are almost universal.
References:
[1] Adams M.E., Dziobiak W.: Finite-to-finite universal quasivarieties are $Q$-universal. Algebra Universalis 46 (2001), 253-283. MR 1835799 | Zbl 1059.08002
[2] Dziobiak W.: On lattice identities satisfied in subquasivariety lattices of varieties of modular lattices. Algebra Universalis 22 (1986), 205-214. MR 0870468 | Zbl 0608.06005
[3] Goralčík P., Koubek V., Sichler J.: Universal varieties of (0,1)-lattices. Canad. Math. J. 42 (1990), 470-490. MR 1062740 | Zbl 0709.18003
[4] Grätzer G., Sichler J.: On the endomorphism semigroup (and category) of bounded lattices. Pacific J. Math. 35 (1970), 639-647. MR 0277442
[5] Koubek V., Sichler J.: Universal varieties of semigroups. J. Austral. Math. Soc. (Series A) 36 (1984),143-152. MR 0725742 | Zbl 0549.20038
[6] Koubek V., Sichler J.: Almost universal varieties of monoids. Algebra Universalis 19 (1984), 330-334. MR 0779149 | Zbl 0551.20047
[7] Koubek V., Sichler J.: Universality of small lattice varieties. Proc. Amer. Math. Soc. 91 (1984), 19-24. MR 0735556 | Zbl 0507.06006
[8] Koubek V., Sichler J.: On almost universal varieties of modular lattices. Algebra Universalis 45 (2001), 191-210. MR 1810548 | Zbl 0981.06004
[9] Koubek V., Sichler J.: On relative universality and $Q$-universality. Studia Logica 78 (2004), 279-291. MR 2108030 | Zbl 1079.08009
[10] Koubek V., Sichler J.: Almost $ff$-universal and $Q$-universal varieties of modular $0$-lattices. Colloq. Math., to appear. MR 2110722 | Zbl 1066.06004
[11] McKenzie R., Tsinakis C.: On recovering bounded distributive lattice from its endomorphism monoid. Houston J. Math. 7 (1981), 525-529. MR 0658568
[12] Pultr A., Trnková V.: Combinatorial, algebraic and topological representations of groups, semigroups and categories. North Holland Amsterdam (1980). MR 0563525
[13] Ribenboim P.: Characterization of the sup-complement in a distributive lattice with last element. Summa Brasil Math. 2 (1949), 43-49. MR 0030931 | Zbl 0040.01003
[14] Sapir M.V.: The lattice of quasivarieties of semigroups. Algebra Universalis 21 (1985), 172-180. MR 0855737 | Zbl 0599.08014
Partner of
EuDML logo