[1] Adams M.E., Beazer R.:
Congruence properties of distributive double $p$-algebras. Czechoslovak Math. J. 41 (1991), 395-404.
MR 1117792 |
Zbl 0758.06008
[2] Adámek J., Herrlich H., Strecker G.:
Abstract and concrete categories. Wiley Interscience, New York, 1990.
MR 1051419
[3] Ball R.N., Pultr A.:
Forbidden Forests in Priestley Spaces. Cahiers Topologie Géom. Différentielle Catég. 45 1 (2004), 2-22.
MR 2040660 |
Zbl 1062.06020
[4] Ball R.N., Pultr A., Sichler J.:
Priestley configurations and Heyting varieties. submitted for publication.
Zbl 1165.06003
[5] Ball R.N., Pultr A., Sichler J.:
Configurations in coproducts of Priestley spaces. to appear in Appl. Categ. Structures.
MR 2141593 |
Zbl 1086.06012
[6] Burris S., Sankappanavar H.P.:
A Course in Universal Algebra. Graduate Texts in Mathematics 78, Springer, New York-Heidelberg-Berlin, 1981.
MR 0648287 |
Zbl 0478.08001
[7] Davey B.A., Priestley H.A.:
Introduction to Lattices and Order. second edition, Cambridge University Press, New York, 2001.
MR 1902334 |
Zbl 1002.06001
[8] Koubek V., Sichler J.:
On Priestley duals of products. Cahiers Topologie Géom. Différentielle Catég. 32 (1991), 243-256.
MR 1158110 |
Zbl 0774.06006
[9] Łoś J.: Quelques remarques, théorèmes et problèmes sur les classes définisables d'algèbres. Mathematical interpretation of formal systems, North-Holland, Amsterdam, 1955, pp.98-113.
[10] Monteiro A.:
L'arithmetique des filtres et les espaces topologiques. I, II, Notas de Lógica Matemática (1974), 29-30.
Zbl 0318.06019
[11] Priestley H.A.:
Representation of distributive lattices by means of ordered Stone spaces. Bull. London Math. Soc. 2 (1970), 186-190.
MR 0265242 |
Zbl 0201.01802
[12] Priestley H.A.:
Ordered topological spaces and the representation of distributive lattices. Proc. London Math. Soc. 324 (1972), 507-530.
MR 0300949 |
Zbl 0323.06011