[AAMV] Aczel P., Adámek J., Milius S., Velebil J.:
Infinite trees and completely iterative theories - a coalgebraic view. Theoret. Comput. Sci. 300 (2003), 1-45.
MR 1976176 |
Zbl 1028.68077
[A] Adámek J.:
Free algebras and automata realizations in the language of categories. Comment. Math. Univ. Carolinae 15 (1974), 589-602.
MR 0352209
[AK] Adámek J., Koubek V.:
On the greatest fixed point of a set functor. Theoret. Comput. Sci. 150 (1995), 57-75.
MR 1357120
[AMV] Adámek J., Milius S., Velebil J.:
On coalgebra based on classes. Theoret. Comput. Sci. 316 (2004), 2-23.
MR 2074922 |
Zbl 1047.18005
[AP] Adámek J., Porst H.-E.:
On varieties and covarieties in a category. Math. Structures Comput. Sci. 13 (2003), 201-232.
MR 1994641 |
Zbl 1041.18007
[AT] Adámek J., Trnková V.:
Automata and Algebras in a Category. Kluwer Academic Publishers, Dordrecht, 1990.
MR 1071169
[AH] Awodey S., Hughes J.:
Modal operators and the formal dual of Birkhoff's completness theorem. Math. Structures Comput. Sci. 13 (2003), 233-258.
MR 1994642
[B] Barr M.:
Terminal coalgebras in well-founded set theory. Theoret. Comput. Sci. 114 (1993), 299-315.
MR 1228862 |
Zbl 0779.18004
[G] Gumm H.P.:
Birkhoff's variety theorem for coalgebras. Contributions to General Algebra 13 (2000), 159-173.
MR 1854581
[H] Herrlich H.:
Remarks on categories of algebras defined by a proper class of operations. Quaestiones Math. 13 (1990), 385-393.
MR 1084749 |
Zbl 0733.18004
[KR] Kurz A., Rosický J.: Modal predicates and coequations. Electronic Notes in Theoret. Comput. Sci. 65 1 (2002).
[Re] Reiterman J.:
One more categorical model of universal algebra. Math. Z. 161 (1978), 137-146.
MR 0498325 |
Zbl 0363.18007
[Ru] Rutten J.J.M.M.:
Universal coalgebra: a theory of systems. Theoret. Comput. Sci. 249 1 (2000), 30-80.
MR 1791953 |
Zbl 0951.68038
[RT] Rutten J.J.M.M., Turi D.:
On the foundations of final semantics: nonstandard sets, metric spaces, partial orders. Lecture Notes in Comput. Sci. 666, Springer, Berlin, 1993, pp.477-530.
MR 1255996
[W] Worrell J.: On Coalgebras and Final Semantics. PhD Thesis, Oxford University Computing Laboratory, 2000, accepted for publication in Theoret. Comput. Sci.